

 1

 Mecury Autocode, Atlas Autocode and some Associated Matters.

Vic Forrington
January 2014

My first experience of the Manchester contributions to computing development was at the
Royal Aircraft Establishment, Farnborough in 1959, where a Ferranti Mercury had just
been installed. I had joined Mathematical Services Department from the Mathematical
Laboratory at Cambridge where I had completed the Diploma in Numerical Analysis and
Automatic Computing under Maurice Wilkes and the Edsac team. Incidentally Geoff
Toothill, one of the original Manchester Baby team was at RAE at the time and I did a little
bit of work with him on the concept of ternary arithmetic rather than binary, using the
magnetic states of north, south and not magnetised.

Digital computing at RAE (yes, there were such things as analogue computers, they were
very good at integration but not too good at arithmetic; indeed to seek the best of both
worlds I worked for a time on the development of a digital differential analyser designed to
simulate an analogue computer within a digital environment), was based on two English
Electric DEUCE machines called Gert and Daisy, with memories based on drum storage.
To get reasonable performance from a program one needed to know the position of the
drum relative to the read/write heads so that an operand was passing just at the right time
without the instruction having to wait another drum rotation. Thus programming was
restricted to particularly masochistic individuals who numbered about twenty out of a
scientific and engineering establishment of some 6000 souls.

Mercury, like Edsac 2, had a random access store and unlike Edsac had a drum backing
store. It came with an assembler language, elegantly named Pig 2, with functionality
similar to what I was used to with Edsac. It was assumed that Mercury and Pig 2 would
deliver the Great Leap Forward in computing at RAE. Accordingly I was sent on a week-
long Pig 2 course at Ferranti in Central London, meagre expenses paid, and instructed to
initiate the computing revolution.

Mercury also came with a piece of software called Mercury Autocode (MA). At Cambridge
high level languages, or autocodes as they were then called, were somewhat
disparagingly described as playthings for amateurs with no real place in a professional
world. I decided to play, and as a result soon abandoned Pig 2 as the basis for RAE
computing and introduced MA as the standard throughout the establishment. Within a year
there were some 250 active users of the Mercury and MA from all disciplines and
departments. The age of the masochists was over!

I myself used MA for my 'real work', the numerical solution of large scale systems of
ordinary differential equations involved in rocket guidance systems and never had to resort
to a lower level language on either functional or efficiency grounds. It is my view that Tony
Brooker and MA represented a paradigm shift in scientific and engineering computing. End
users now had the power to chart their own destinies without the need for the intermediate
programmers.

In 1961 I was appointed as a Research Assistant in the Computing Machine Laboratory,

 2

then part of Electrical Engineering Department of Manchester University, where Tom
Kilburn and his team were developing Atlas and Tony Brooker and his team were
continuing their work on the Compiler Compiler. Tom had read mathematics at Cambridge
before his war time work with FC Williams on radar who he subsequently joined at
Manchester to design and built the world's first stored program electronic computer (the
Baby). Tony had read mathematics at Imperial College, London and gone on to develop a
relay- based arithmetic unit before moving to develop software at the Mathematical
Laboratory at Cambridge where Maurice Wilkes had designed and built the world's second
stored program electronic computer (the EDSAC). He then moved on to Manchester
taking over from Alan Turing the development of programming methodologies and going
on to his world-leading development of a high-level language, the Mark 1 Autocode which
subsequently evolved into Mercury Autocode.. To be appointed to be part of a team, albeit
a lowly part, led by these two giants of computing history was indeed a great privilege.
However I was soon to be brought down to earth by Tony's opening remark when I first
arrived. 'Welcome to the dustbin for failed mathematicians'!

Subsequently with both my Cambridge and Manchester backgrounds I was to learn that
there was no love lost between the Mathematical Laboratory's 'let's get the theory right'
approach and the Computing Machine Laboratory's 'let's get on and build something'
approach.

I had been interviewed by Tony Brooker, who seemed somewhat surprised when I
subsequently turned up. Nominally I reported to Tony although in those days there seemed
no such thing as organisation structure or specific responsibilities; people got on with what
they thought needed doing. In particular I helped out with the [University’s] Mercury
computing service, assisting users with the use of MA and often with the mathematical
basis of tackling their problems, or numerical analysis as it was known. Many of the
methods had been re-invented on the advent of computers without reference or even
knowledge that Isaac Newton had originated them some 250 years earlier. However
Newton could not summon 100 men for 100 years to undertake the rather tedious
arithmetic which became easy meat for the 1960's electronic computer so the methods
had soon been forgotten.

Users of all academic rank would stand in a queue awaiting their turn [for Mercury], to
insert their paper tape into the reader and take their output tape to the printer, find that
they had a syntax error, repair their input tape and rejoin the queue. Once when I was
supervising the queue Professor FC Williams, co-inventor with Tom Kilburn of the stored
program computer but small in physical stature, was involved in a minor altercation about
queue conduct. He approached me afterwards and suggested that a large photograph of
himself be affixed to the computer, pointing out his status in the computer world. He was a
man of great humour as well as inventiveness who had ceased to be involved in computer
design and going on to make fundamental developments in other areas of electrical
engineering. Reputedly he claimed that the advent of the transistor had made computing
move from invention to merely a branch of technology. I think that he may well have been
right as far as basic hardware was concerned but that the Atlas Supervisor and the
Compiler Compiler went on to demonstrate that fundamental software inventions would
still take place.

I got involved with Atlas Autocode, working with Tony Brooker on the functional design of
the language within Tony's very clear idea of the overall structure. He was keen, almost

 3

too keen to incorporate any functionality I suggested might be useful, for example the
extension of array definitions from conventional vectors and matrices to multi dimensional
and sparse array definitions such as symmetric and tridiagonal matrices that were
commonplace in linear algebra and partial differential equation computations. As well as
functionality we looked at efficiency issues. For example in earlier work with Mercury
Autocode I had reduced the running time of one program from eight hours to two hours
merely by replacing divisions by four by multiplications by point two five (multiplication
being hardware based and divisions by a software routine). So the AA compiler identified
division by constants and replaced them with multiplications. However my main
responsibility was to maintain a running document of the evolving functionality which
served as both the specification of the language and eventually the first programming
manual.

Tony went off to IBM in the USA for a mini sabbatical where as he told me later, nobody
seemed interested in what he was doing, only in taking him away from his rival
Manchester developments. So as usual he did his own thing, including the implementation
of a multi-length arithmetic system. (He had after all pioneered software-based floating
point arithmetic well before the Manchester implementation of hardware floating point.)

Even before AA became a working reality I was conducting programming courses to
potential users, including a dozen or so heads of department and professors at Edinburgh
University which had signed up to use the Atlas Computing Service when it became live.

One of the few times I had to resort to low-level coding, as opposed to autocodes, was to
incorporate a standard routine (Runge-Kutta) for solving ordinary differential equations into
the Atlas fixed store, which already had so many demands on it that it was more like
getting a gallon into a pint pot rather than the traditional quart. I sidled up to Dave
Howarth, the software guru of the fixed store who asked me how much space I would
require. I told him 50 – 100 words; he sighed and said he could perhaps find 20 for me, to
which I eventually agreed. He came back with 20 non -contiguous absolute addresses.
He said I could have them until Monday, otherwise he would have to give them to
someone else. It ate badly into my cricket and drinking weekend and caused me to get
down to some shocking machine level coding but of course it had to be done. Not as an
order but as an expectation based on pride rather than duty, as was much of the Atlas
development work. Looking back on it however I suspect that my routine was never
incorporated, nor should it have been as the efficiency gains would have been trivial as the
great bulk of the processing would always have to be done by specific user-written code
outside of the fixed store.

I rarely had need to venture into the computer room while Atlas was being built by the joint
University and Ferranti team under the ever watchful eye of Tom Kilburn puffing on his pipe
while sitting silently in his arm chair. An inspiring but somewhat fearful sight. I was
however asked to help out by providing a program that would demonstrate the brute
arithmetic power of the Atlas for the scheduled Grand Opening [in December 1962]. As AA
was not yet available I wrote a simple Assembler program to solve Laplace's equation in a
square, which is an iterative process, the number of iterations necessary being determined
by the fineness of the mesh. By default this rather trivial demonstration became a major
part of the presentation, the reason being that the Atlas arithmetic unit at that stage of its
commissioning had a mean free error time of only a few seconds, causing many more

 4

complex programs than mine to crash. However, because mine was an iterative process
and only the arithmetic would fail rather than the logic, it meant that the program would
eventually finish successfully. Hopefully nobody noticed that the number of iterations
required for completion was highly variable!

One of my roles had evolved into writing programs which would demonstrate the sheer
computing power of Atlas, and in some cases identify hardware and system software
faults. In particular Frank Sumner made use of the variable number of iterations in my
Laplace program to track down and rectify a problem with B-register operation under
certain circumstances. As well as research and demonstration programs I continued to be
involved in user problems, one particular one emanating from 'downstairs' in Electrical
Engineering concerning the transient performance of polyphase induction motors. With
the standard numerical method for solving the equations Atlas required a run time 50
minutes per case, illustrating that even with arguably the world's fastest arithmetic unit
there were problems likely to be beyond its capacity, and warranting further development
not just of computing power but of mathematical methods of solution. In this case a re-
formulation of the problem reduced the run time to under five minutes and the
development of an entirely new method of numerical solution reduced it to fifteen seconds.

Perhaps indicative of how the joint team operated was when at the end of the Grand
Opening, Tom Kilburn, followed by Peter Hall, the Ferranti head of the project, led us all
into the College Arms, not a particularly familiar territory to Tom but very well known to
many of his team. However in his best Yorkshire diction Tom ordered 50 pints of best
bitter and, turning to Peter said firmly 'and he's paying for it!' And as transpired as the
evening wore on, he paid for many more. Years later, as the College Arms was
demolished along with most of the Manchester we knew, it was pleasing to learn that
stone engraving designating the pub was now incorporated into one of the walls of the
brand new computer room [in the Kilburn Building].

By the time I left the department in 1964, Atlas and AA were fully operational and Mercury
had been decommissioned. I had entered the more lucrative but not quite as exciting world
of international management consultancy, although returning later on for a three year stint
as a Visiting Lecturer when Tom had set up a full blown Department of Computer Science
and introduced the first ever undergraduate degree course in computing. True to his
background he insisted that this first course had a high engineering content, in addition to
the more usual mathematical and software topics to be seen in the Computer Science
courses that were to follow at many other universities.

The last time I saw Tom was [in 1998] at the 50th anniversary of the Baby, where of course
he was the star of the show. He told me, without any false modesty that he could not
understand why such a fuss was being made of this first ever stored program computer,
which he said had only taken up six months of his time. He was much more proud of
having set up the first computing department and the first degree course. That, however,
will probably not be what he will be remembered for by computer historians.

Like other people at the time I felt that Tony had made a mistake in not including Algol as a
subset within AA, irrespective of the sub-set's potential inefficiencies. Perhaps he thought
this would have presented technical difficulties but more likely that it would have been
inelegant by his exacting standards. However when it eventually went live on Atlas, AA

 5

quickly became the de facto standard programming language at Manchester and those
other bodies using the university computing service. I subsequently introduced it to clients
of the consultancy company I had joined, based on the London University Atlas and also
developed a high level language for inventory control applications that was implemented
entirely in AA.

With the exception of Edinburgh University, where it flourished (as Edinburgh IMP) for
many years, I believe that Atlas Autocode did not prosper outside the Atlas environment for
two main reasons: a desire by Ferranti to retain Mercury Autocode and develop Extended
Mercury Autocode for upwards compatibility within its product line, and a prejudice against
Manchester University developments by a new breed of computer science academics who
saw a universality in Algol which was never realised. However the Atlas Supervisor and
the Compiler Compiler became the basis for major systems developments throughout the
computing world.

[My thanks to Simon Lavington for inviting me to make this contribution and for his
encouragement throughout the process, not least in putting some of my recollections in
more accurate historical perspective]

Vic Forrington (left) and Jeff Rohl (right) at a graduation ceremony in 1963.

