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To mark half a century of computational quantum chem-
istry, this account recalls some computer experiments in
Manchester, England, 1951-1960.

“…whether we last the night or no,
I’m sure it’s always touch and go.”

Dylan Thomas, “Eli Jenkins’ Prayer”

The Manchester University–Ferranti Mk I computing
machine became available for experimentation by academic
users in the middle of 1951. That October, Frank Sumner began
his Ph.D. study under the supervision of Christopher Longuet-
Higgins to explore of what use this machine might be in chem-
istry. His project was, initially, to solve the Hückel molecular
orbital eigenvalue problem for some aromatic hydrocarbons
by using the contour integration methods of Coulson and
Longuet-Higgins.1 Longuet-Higgins’ antipathy toward com-
puters in chemistry at that time is well known,2a the gist being
that a solution of the Schrödinger equation, either as a set of
numbers or as an algebraic series (such as those of Hylleraas
for He or of James and Coolidge for H2), could not possibly
provide the same insight into atomic and molecular structure
as one could derive from an orbital picture.2b Hence, I suspect
that this initiative came from M. G. Evans.

Within a few months, Longuet-Higgins left for a Chair of
Theoretical Physics in London and shortly thereafter for one
in Theoretical Chemistry in Cambridge, England. Meanwhile,
Frank Sumner, without guidance and finding his project
intractable, came to me and asked if I would help; he provid-
ed me with a big fat programming manual, and we got down
to it together. Lacking much progress, we soon sought help
from Alan Turing and Tony Brooker in the Computing Machine
Laboratory, and they advised us, rightly of course, to forget the
contour integrals and attack the eigenvalue problem head-on.

It seemed obvious at the time that we should make use of
symmetry in order to reduce the sizes of the secular determi-
nants that we wished to solve, but this led to the determinants
being unsymmetric. Brooker was writing a Lanczos algorithm
to reduce a matrix to its characteristic polynomial,3 so we adopt-
ed this approach to get the eigenvalues and then generated the
eigenvectors by iterative procedures, such as the Rayleigh quo-
tient method. Much later, when the Givens and then the House-
holder methods matured, it became clear that it was faster not
to factorise the matrices in this way but to keep everything
symmetric and solve the full matrix for both its eigenvalues
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and eigenvectors; here, again, Brooker pointed us4 toward one
of the standard avenues for solving the eigenvalue problem.

The Ferranti Mk I machine could do about 800 integer oper-
ations per second; floating point operations (multiplication,
division, square roots, and so on) were by subroutine and could
be done at about 10 per second. The machine was built main-
ly from about 4,050 glass radio valves, housed in the usual
array of racks in a room of about 20 feet by 30 feet; off to the
back was the control room, into which we never went, hous-
ing the power supplies and the 25 kW cooling system required
to dissipate the heat from the electron-tube filaments.

The “fast store” consisted of 8 Williams-type cathode ray
tube (CRT) storage devices, each capable of holding 64 20-bit
data strings. An individual data string could represent an instruc-
tion, 10 bits for the operand address and 10 bits for the oper-
ation, or an integer number; alternatively, two consecutive
strings could be taken together to represent a floating point
number, 30 bits for the mantissa (including a 1-bit sign) and
10 bits for the exponent and its sign. Another storage tube held
eight 10-bit counters, the value of any of which could be com-
plemented with the address part of an instruction so as to select
consecutive elements of a vector or matrix. And a “backing
store” consisted of a rotating magnetic drum, capable of hold-
ing 16K 40-bit words, with an access time of 35 ms for read
and 90 ms for write.

One other trick that is now just a curiosity was the method
of generating random numbers: the signal from a noisy resis-
tor was chopped into zeros and ones and squared a couple of
times, thus yielding truly random numbers.

The console consisted of a large desk with a 5-hole paper
tape reader (200 characters per second) and paper tape punch
(15 cps) on one side and an electric typewriter (6 cps) on the
other; the much faster “golf-ball” IBM Selectric typewriter
was still in the future. In between was a console with four 3-
inch CRTs displaying the contents of the accumulator, the two
registers and the eight counters, and two 6-inch CRTs into
which the contents of any two of the eight storage tubes could
be copied for observation — or manipulation by hand! These
displays consisted of two columns of 32 20-bit strings, togeth-
er with one extra 20-bit string to tell you which tube you were
seeing; these strings were subdivided into 4 x 4 blocks for easy
viewing.5 (See Figure 1 in which the bright dots are ones and
the faint ones are zeros.)

Each of the 5-bit sub-strings was named after the corre-
sponding teleprint character of the 5-hole tape, except for the
teleprint control characters (e.g., carriage return, etc.) to which
non-alphabet symbols were assigned. The use of the teleprint
code to represent the numbers 0–31 and in which to write algo-
rithms was much reviled by some programmers,6a but I can still
recite it by heart,

/ E @ A: S I U 12 D R J N F C K T Z LW H Y P Q O B G “ M X V £

almost as well as my ABC.

In front of the display tubes were various switches by which
instructions could be performed one at a time and two banks
of 20, one for setting up a string to write into the store and
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Figure 1. (a) Photograph of a Kilburn–Williams cathode ray
storage tube showing the contents of storage locations (left-
hand side) // to £/, a segment containing instructions, and
(right-hand side) /E to £E, comprising constants, work space
and addressing information. (b) Alphabetic translation of the
dots in Fig. 1(a) into teleprint code in “Coding Sheet” form.
(Adapted from the Programmer’s Handbook, 1952 edition).

a

b
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another for an instruction to perform, which could include
either writing in the hand-switches or performing some other
operation. “Finger trouble” — as Brooker called it 6b — was a
frequent malady.

Machine time was allocated in half-, one-, two-, and four-
hour slots during the day, with a (nominal) 8-hour slot from
midnight on. The time from 7.30 to 9.00 a.m. was engineering
time, in which the engineers would run tests, make small mod-
ifications, and look for failing valves by turning up the fila-
ment voltages to check for low emission. Otherwise, with an
estimated filament lifetime of about 5,000 hours,5 one would
anticipate random failures about every 75 minutes. Soon, a
pattern was established whereby we received one half-hour
and one 8-hour slot per week, the former for “development”
and the latter for “production.” Other overnight regulars were
the Weather Service, TNPG (The Nuclear Power Group) and
A.V. Roe (designing the Vulcan Bomber, I would guess). Dur-
ing the night, there was one full time engineer on duty, and
with him asleep in the corner in an arm chair, there was little
to do except to watch the dots as the calculation progressed.
Each 20-bit instruction became highlighted as it was accessed,
so you could watch the machine sweep through them, know-
ing exactly where you were, or else watch the numbers as they
kept on changing.

We knew little about convergence at that time, and so we
would plant two numbers (one the convergence criterion and
the other the current value to be tested) in the bottom right-
hand corner of one of the storage tubes. Often the one would
approach the other monotonically, and the calculation pro-
gressed. However, sometimes the test number would begin to
oscillate, for which a solution had been provided. There were
two switches up on the right-hand side, labelled L and M, and
if you put an instruction in the loop ending in /L or /M, it would
read the corresponding switch, and if it was up, the programme
would either stop so that you could fiddle with the hand-switch-
es, or it could be made to come out of the loop and carry on to
the next step. With our “large” matrices, of order 8-10, one
might get a converged eigenvalue and eigenvector perhaps
twice an hour toward the end (when there were more and more
vectors against which to orthogonalise the present one), so any
result was better than no result because it could always be
worked on later to try to improve it. Frequently, with the low
soporific hum, drowsiness would win, only to be broken by
the typewriter motor, which switched itself off after 5 minutes
of inactivity, starting up to signify that another result was about
to arrive.

One’s relief at this modest success can be gauged by two
statements from the Programmer’s Handbook. In the 1952 edition:

“It should be clearly understood that the machine
is liable to carry out certain operations incor-
rectly. This malfunctioning can either be chronic
or transient. Whilst everything is being done on
the engineering side to eliminate these undesir-
able features, nevertheless in the meantime pro-
grammers are obliged to minimise the effects of
machine errors by devices in the programme.”

Then follows some advice on recognising the possible types
of errors, on breaking the programme up into “steps,” and on
incorporating some consistency tests, if possible, within each
step. And, from the 1953 edition (when the machine was work-
ing rather more reliably):

“…The duration of such steps depends on how the
machine is behaving, but programmers must be
prepared to arrange for steps as small as 1 minute.
If the machine is functioning well, however, then
fault-free runs of up to 1

2 hour can be relied on.”

Also, listed daily on the notice board was a table of the mag-
netic tracks that were thought to be unreliable: this meant that
all programmes had to be written in a relocatable form, and
the storage tracks to be avoided had to be entered, either by
paper tape or via the hand-switches, before starting a given
run.

When a bad track was encountered, or a documentable fault
occurred, there was a log book into which the event was
entered,6b and by 1956, the machine would often run for a full
24 hours without an entry being made. It is remarkable, now,
to think that this machine could do about 68 million integer
instructions in 24 hours, slightly more than a long-since obso-
lete Intel 486 processor could do in 1 second!

Often, while staring at the monitors, usually at about 4 a.m.,
bits (“clods” in Turing parlance) would drop into or out of the
corners of the CRT display; not surprising, since the machine
had been running by then for about 18 hours. Time to wake up
the engineer! Depending on the severity of the fault, you would
either hang around for a while or else abandon proceedings for
the night. If I had a 9.30 lecture, I would find something to do
in the lab: at that time, we were involved in radioactive count-
ing, and it is remarkable how much lower the background
counts were at 4 in the morning — but the “Greats” of the
Physics Department one block over in Coupland Street had
known that decades before. If not, I would go home to sleep.

Of course, when one finished, nothing could be left on the
machine. Numbers required for future use were punched out
on paper tape — twice: you then held them up to the light, and
if they were the same, all well and good. If not, one could usu-
ally reconstruct the correct data from the printed record and
the two tapes; without a printed record (sometimes the print-
er did not work), you punched a third tape and created the data
tape for the next session on the principle that lightning never
strikes twice in the same place.

Through these methods, we were able to calculate the eigen-
values and eigenvectors of Hückel determinants for polyben-
zenoid hydrocarbons up as far as ovalene, 30 carbon atoms7a

(although this paper was actually preceded by one relating to
the properties of a homologous series of Hückel-style secular
determinants, with the algebraic analysis provided by Alan
Turing).8 That we did not go further was not due to lack of for-
titude, but the size of vector that we could handle was limited
by the page size of 32 numbers; to add another ring would have
made it 34 carbon atoms, which was too many. Also, proce-
dures were limited to 128 20-bit instructions, beyond which a
cumbersome “Routine Changing Sequence” had to be invoked.
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In fairly quick succession, we examined bond-order–bond-
length relationships for naphthalene and anthracene9 and the
combination of force fields with Hückel energies to treat steric
hindrance and twisting in o,o'-substituted biphenyls,10 a bit
like what is now done in molecular mechanics. We tried to
extend our methods to heteroaromatics, but the main value of
that paper was to introduce for the first time the modern inter-
pretation of electronegativity as the derivative of the orbital
electronic energy with occupation number.7b It is interesting
to note that Robert Mulliken never associated11 his formula for
electronegativity, (I +E)/2, with the slope of a parabola at the
middle of three unit-spaced co-ordinates, even though the par-
abolic nature of electronic binding energies in many-electron
atoms had been recognised in the late 1930s.

Then, by 1955, as far as Hückel-type molecular orbital cal-
culations were concerned, we were stuck, limited by the size
of the storage space and by the intrinsic speed of the machine.
So, with a new student, Brian Gray, we looked around for oth-
er things that we might do. We tried a calculation of the dipole
moment for a diatomic12 and went on to examine infrared
absorption intensities, finding that it was quite possible for an
overtone to be more intense than the fundamental.13 However,
our main effort was devoted to finding how many linear com-
binations were needed to give an acceptable representation of
the wave function of a diatomic molecule, a simple one of
course, H2

+.14 We limited ourselves to 10 hydrogen-like atom-
ic orbitals, 1s to 4f inclusive; this required the calculation of
165 two-centre integrals, which could not possibly have been
done with sufficient speed and accuracy by numerical quad-
rature because they were functions of two variables. We devised
a method by which the orbital functions could be represented
symbolically in the machine and the integrals were calculated
by algebraic manipulation before finally being reduced to a
number for the particular value of R, the internuclear distance
in question. Unbeknownst to us, S.F. Boys was doing a very
similar thing at about the same time, in Cambridge.15 Since
then, the use of symbolic algebra in computational chemistry
has been slow in coming. Longuet-Higgins’ fears that we might
be inundated by massive polynomial solutions of the Schrödinger
equation have not materialised, such solutions being limited
to rather restricted kinds of potential functions,16 at least so
far. However, the calculation of two-centre integrals symbol-
ically has, just recently, reached an elegantly viable level.17

The answer to our original question was that if the basis
functions were chosen from a complete set, one on each nucle-
us, 10 functions were enough to give the total energy of H2

+

correct to within 2 x 10 -5 Hartree.18

Around 1956, two major advances occurred: Brooker intro-
duced a compiler known as Autocode,19 which simplified enor-
mously the programming of small one-off calculations, and a
new machine, the Ferranti Mercury, was commissioned a year
later. It was a little over an order of magnitude faster, made
fewer mistakes, and had a superior Autocode that made the
recursive calculation of Morse wave functions and the like
quite straightforward. Demand expanded to fill the new capa-
bility, and within a month, machine time was at a premium

again. Nevertheless, we continued to hold on to our one half-
hour and one overnight weekly allocation.

I will conclude by recounting just two episodes from this
later period. One night, I was alone, the engineer having failed
to show up for the midnight shift. Around 3.30 in the morning,
I began to smell warm insulation, and as it got stronger, I tele-
phoned the backup engineer at home, who decided that the
power should be switched off. However, the control room was
locked, and by the time he arrived, smoke was emanating from
one of the electronic cabinets. The machine was out of action
for a whole week.

Early in 1960, a 3-inch CRT with 35 mm camera was incor-
porated into the system, and we tried to use it to plot wave
functions. We soon found that unit displacement in the x-direc-
tion was about 30% longer than in the y-direction, and dragged
the Electrical Engineering faculty member who had built it,
Richard Grimsdale, away from his lunch to adjust it for us. It
had only been built as a kind of a toy and was placed in a rack
about 6 inches above the floor. So Frank Sumner and I lay at
on our stomachs, holding a ruler up to the face of the CRT until
1 unit displacement in either direction had been adjusted to be
the same — as far as we could tell. Grimsdale was most con-
temptuous of our attempt to wring more precision out of the
device than had been intended, but we were able to publish
several satisfactory pictures of wave functions,18,20 with a spot
size of about 1 mm, that is, a resolution of about 25 dots per
inch! Two unpolished examples are shown in Figures 2 and 3.

Finally, H2
+ has a place in the annals of computer technol-

ogy. When the concept of a one-level store (now more com-
monly referred to as virtual memory) was invented, Brooker
and Sumner used our 10th order [H – SE] (Z = 1) matrix with
which to prove its validity.22

Frank Sumner recently retired as Professor of Computer
Science in Manchester, and Brian Gray as Professor of Math-
ematics in Sydney. In addition, one other person, Brian Sut-
cliffe, became involved toward the end of 1959. He was doing
his Ph.D. with Roy McWeeny in Keele, but Keele did not yet
have authority to grant Ph.D. degrees, so I became his (nom-
inal) supervisor. He came up to Manchester once a week to do
atomic structure calculations on the Mercury machine and used
a small corner of my office as a base, gaining his Manchester
Ph.D. in 1962; he recently retired also, as Professor of Theo-
retical Chemistry in York, England.
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Figure 2. A 35 mm film strip showing Morse wave functions
for the 15 vibrational levels of H2 over the range – 0.6 ≤ (r – re)
≤ 4.4Å. The final composite diagram is Fig. 1 of Ref. 20.

Figure 3. Photographic superposition of contours for an
approximate wave function for the ground state of H2

+ (dots)
on hand-drawn contours for the exact wave function, taken
from Ref. 21. The completed diagram is Fig. 1 of Ref. 18.


