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Abstract. This paper evaluates the performances of the OWL 2 reasonersHer-
miT, FaCT++ and Pellet in the context of an ontological clinical decision support
system in lung cancer care. In the first set of experiments, wecompare how the
classification and realisation times of the LUCADA and LUCADA-SNOMED CT

ontologies vary as we expand their TBoxes with additional guideline rule knowl-
edge. In the second set of experiments, we investigate the effect of increasing the
ABox of the LUCADA ontology on the realisation times.

1 Introduction

Lung cancer is the most common and deadliest type of cancer, and is responsible for
21% of all cancer-related deaths globally. In England, caredecisions for lung cancer pa-
tients are made by multidisciplinary teams (MDTs) that are comprised of clinical staff
from diverse backgrounds. These teams meet weekly in cancercentres across the coun-
try in order to come to treatment decisions for each patient in their care. Usually, MDTs
make use of their combined experience and knowledge of published clinical guidelines
to decide upon the next stage of treatment for a patient [1]. The National Lung Can-
cer Audit (NLCA) data reveals that one of the major problems in the management of
lung cancer care in England is the substantial level of unjustified variation in treatment
decisions between different cancer centres [14, 13].

In order to reduce variability in clinical practice, clinical guidelines provide well
defined sets of directions and evidence based standards to assist clinicians on decisions
about appropriate clinical procedures [6]. However, as unstructured and free-text doc-
uments, clinical guidelines are usually not readily accessible at the point of decision
making in the MDT meetings. Fortunately, clinical decisionsupport (CDS) systems
that computerise and automate the daily management of guidelines can facilitate access
to guideline information in these meetings.

The computerisation of guideline rules can be achieved by structured logical lan-
guages which can express guideline rule eligibility and decision criteria. To date, many
proprietary expression languages [4, 9, 11, 19, 20] have been proposed in order to en-
code and interpret guideline rules that are in a machine readable format. The interpreta-
tion of computerised guideline rules are carried out by execution engines that can match
the encoded guideline rule criteria against existing patient records in order to infer rule
applicability for different patient records.



In [16], we proposed OWL 2 [2] as a suitable candidate for encoding guideline rule
criteria in the context of a CDS system for lung cancer care and we outlined a purely
ontological guideline rule inference framework. In this paper, we focus on performance
evaluations of off-the-shelf OWL 2 reasoners for inferringpatient rule applicability
based on the guideline rule inference framework presented in [16].

2 LUCADA ontology

Since 2004, the NLCA has collected all lung cancer patient data in England within the
English Lung Cancer Dataset (LUCADA) [13] in order to gain a better understanding
of the care delivered during referral, diagnosis and treatment of lung cancer patients.
We have manually built a domain specific OWL 2 lung cancer ontology based on the
LUCADA data model.4 The LUCADA ontology provides the semantic layer of the Lung
Cancer Assistant [16], an ontology-based system that is capable of providing guideline
rule-based decision support during lung cancer MDT meetings.

SNOMED CT [15] is the reference ontology of choice across the information sys-
tems within the National Health Service (NHS). Thus, to facilitate interoperability with
other NHS applications, we integrated LUCADA with a lung cancer-specific module
of SNOMED CT. To this end, we have(i) identified the classes in SNOMED CT related
to those in LUCADA and established correspondences (i.e. mappings) between them;
and(ii) extracted a small fragment of SNOMED CT that captures the meaning of such
relevant classes (i.e., a domain-specific module). SNOMED CT, however, is a complex
ontology describing more than 300,000 classes; as a result,computing mappings with
LUCADA is infeasible without suitable tool support. Thus, to perform task (i) we used
the interactive-mode of the ontology matching system LogMap [7, 8]. Additionally, in
order to perform task (ii), we used the ontology modularization technique described
in [3]. Table 1 provides a side by side comparison of LUCADA and the integrated ontol-
ogy LUCADA-SNOMED CT in terms of number of entities, axioms and expressivity.

In order to incorporate lung cancer guideline knowledge, weintroduced thepatient
scenarioclass into both ontologies [16]. A guideline rule consists of an antecedent, i.e.
rule body, which specifies the eligibility criteria for the rule and a consequent, i.e. rule
head, which encapsulates the action(s) to take when the conditions in the antecedent
are satisfied [5]. According to our guideline rule inferenceframework, we represent
the guideline rule antecedents as definedpatient scenarioclasses, whose equivalent
class capture the semantics for rule eligibility criteria.As an example, the eligibility
for the guideline rule5 “Consider radiotherapy for Stage I, II, III patients with good
performance status”is encoded as the following OWL 2 class equivalence axiom:

GR1 ≡ GoodPerformancePatient ⊓ ∃hasClinicalFinding.

(NeoplasticDisease ⊓ ∃hasPreHistology.NonsmallCellCarcinoma ⊓

∃hasPreTNMStaging.string ⊓ ∀hasPreTNMStaging.{I, II, III})

4 Through a data sharing agreement between the University of Oxford and NLCA, we have been
granted access to an anonymised version of LUCADA dataset.

5 The guideline rules have been extracted from from National Institute for Clinical Excellence
(NICE) document [12].



Table 1: Summary of the LUCADA and LUCADA-SNOMED CT ontology metrics

Metric
Ontology

LUCADA-SNOMED CT LUCADA

DL Expressivity ALCHIF(D) ALCHI(D)

# Classes 1553 376
# Object properties 63 37
# Data Properties 63 63

# Equiv. class axioms 1010 0
# Subclass of axioms 999 386
# Prop. domain axioms 97 97
# Prop. range axioms 30 30

Furthermore, we represent apatient recordas a set of OWL 2 individual axioms
with respect to the terminological knowledge captured within the LUCADA and the
integrated LUCADA-SNOMED CT ontologies as exemplified in [16]. According to this,
a patient record is characterised (on average) by 25 class and property assertion axioms.
An OWL 2 reasoner can be used to determine whether a specific patient is a member
of a particular patient scenario class, and therefore, subject to the recommendations or
actions of the respective guideline rule.

3 Evaluation

We evaluated the scalability of our guideline rule inference framework with off-the-
shelf OWL 2 reasoners: HermiT 1.3.7 [10], Pellet 2.3.0 [17] and FaCT++ 1.6.2 [18].
The tests have been performed on a Windows 7 64-bit desktop computer with 15 GiB
of RAM and an Intel Xeon 2.27 GHz CPU. Overall, we report two sets of experimental
results as given below. Note that all results reported here have been acquired as averages
of at least 10 repetitions of the described experimental setup.

3.1 Increasing the TBox with patient scenarios

In the first set of experiments we compared how the classification and realisation times
of LUCADA and LUCADA-SNOMED CT ontologies varied as we increased the guide-
line rule coverage (i.e. patient scenarios classes). To this end, we incrementally added to
each ontology 40 patient scenarios, represented as equivalent class axioms (see Section
2), and recorded the times taken by each reasoner to perform classification (i.e. exe-
cution ofprecomputeInferences(CLASS HIERARCHY) method) and realisation of
only one patient individual (i.e. execution of the methodgetTypes()).

Figures 1 and 2 summarise the reasoning times obtained for the LUCADA and LU-
CADA-SNOMED CT ontologies respectively. In both figures, we only report thetotal
inference times (classification + realisation) for FaCT++ and Pellet since the individ-
ual realisation times for these two reasoners were negligible. However, for HermiT
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Fig. 1: Reasoning times for LUCADA containing 1 to 40 patient scenarios
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Fig. 2: Reasoning times for LUCADA-SNOMED CT containing 1 to 40 patient scenarios

we present classification and realisation times separately, since realisation takes up a
significant portion of the total inference time (up to 0.2ms for LUCADA and 1s for LU-
CADA-SNOMED CT). We note that the classification times for all three reasoners are
below one second for the LUCADA ontology, whereas they rise to 9 and 50 seconds re-



 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0  20  40  60  80  100
 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

T
im

e 
(m

s)

Number of patients

FaCT++
Pellet

HermiT

Fig. 3: Realisation times in LUCADA with 1 to 100 patient records

spectively with FaCT++ and Pellet for the integrated LUCADA-SNOMED CT ontology.
Note that HermiT classifies the integrated ontology the fastest, with classification times
ranging from 1.6s to 2.2s.

3.2 Increasing the ABox with patient records

In the second set of experiments, we incrementally added 100patient records, repre-
sented as OWL 2 individuals axioms (see Section 2), to the LUCADA ontology which
contained 40 patient scenarios. Figure 3 compares the realisation times (i.e. execution
of the methodgetTypes() for each patient individual) obtained by all three reasoners.
As expected, realisation times increase as more patients are added to the ontology. It is
noticeable that FaCT++ and HermiT have very disparate behaviours. While the increase
in realisation times with respect to the number of patient individual in the ontology is
fairly gradual and linear for FaCT++, the realisation timesfor HermiT increase very
quickly and clearly in a non-linear fashion. Although not assevere as the realisation
times achieved by HermiT, Pellet realisation times are alsoconsiderably slower com-
pared to FaCT++ and seem to increase non-linearly.

4 Conclusions

In this paper we evaluated empirically the classification and realisation performances
of the three most commonly used OWL 2 reasoners within our guideline rule inference
framework. We found that FaCT++ is the best choice for our application since it pro-
vides very fast inference times for both classification and realisation. We also found



that HermiT provides the fastest TBox reasoning times for the integrated LUCADA-
SNOMED CT ontology; but it performs poorly in ABox reasoning with bothontologies.
Finally, we found that Pellet performs well in classifying the LUCADA ontology but
struggles with the LUCADA-SNOMED CT ontology, which contains many axioms in-
herited from SNOMED CT.
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