MORe: A MODULAR OWL REASONER FOR ONTOLOGY CLASSIFICATION

Ana Armas Romero, Bernardo Cuenca Grau, Ian Horrocks, Ernesto Jiménez Ruiz

Department of Computer Science, University of Oxford

July 2013

(日) (日) (日) (日) (日) (日) (日)

PROFILE SPECIFIC REASONERS

OWL 2 reasoners

HermiT, Pellet, Fact++, JFact, RacerPro...

- Complete for OWL 2
- Highly optmized, but still too slow for some ontologies.

PROFILE SPECIFIC REASONERS

OWL 2 reasoners

HermiT, Pellet, Fact++, JFact, RacerPro...

- Complete for OWL 2
- Highly optmized, but still too slow for some ontologies.

Profile specific reasoners

- ELK, CEL (EL), Jena (RL), OWLIM (RL, QL)
 - Extremely efficient and scalable
 - No completeness guarantee if ontology contains even just a few axioms outside relevant fragment.

PROFILE SPECIFIC REASONER

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

MORe integrates an OWL 2 Reasoner and an EL reasoner \longrightarrow currently HermiT/JFact and ELK finding two subsets $\mathcal{M}_1, \mathcal{M}_2 \subseteq \mathcal{O}$ such that

PROFILE SPECIFIC REASONER

(ロ) (同) (三) (三) (三) (○) (○)

 $\begin{array}{l} \mbox{MORe integrates an OWL 2 Reasoner and an EL reasoner} \\ \longrightarrow \mbox{currently HermiT/JFact and ELK} \\ \mbox{finding two subsets } \mathcal{M}_1, \mathcal{M}_2 \subseteq \mathcal{O} \mbox{ such that} \end{array}$

ELK classifies $\text{Sig}(\mathcal{M}_1)$ with axioms in \mathcal{M}_1

PROFILE SPECIFIC REASONER

MORe integrates an OWL 2 Reasoner and an EL reasoner \longrightarrow currently HermiT/JFact and ELK finding two subsets $\mathcal{M}_1, \mathcal{M}_2 \subseteq \mathcal{O}$ such that

- ELK classifies $Sig(\mathcal{M}_1)$ with axioms in \mathcal{M}_1
- \blacksquare OWL 2 reasoner classifies Sig($\mathcal{M}_2)$ with axioms in \mathcal{M}_2

PROFILE SPECIFIC REASONER

MORe integrates an OWL 2 Reasoner and an EL reasoner \longrightarrow currently HermiT/JFact and ELK finding two subsets $\mathcal{M}_1, \mathcal{M}_2 \subseteq \mathcal{O}$ such that

- \blacksquare ELK classifies $\text{Sig}(\mathcal{M}_1)$ with axioms in \mathcal{M}_1
- \blacksquare OWL 2 reasoner classifies $\text{Sig}(\mathcal{M}_2)$ with axioms in \mathcal{M}_2

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

• \mathcal{M}_2 is as small as possible

-reduce workload of OWL 2 reasoner!

PROFILE SPECIFIC REASONER

MORe integrates an OWL 2 Reasoner and an EL reasoner \longrightarrow currently HermiT/JFact and ELK finding two subsets $\mathcal{M}_1, \mathcal{M}_2 \subseteq \mathcal{O}$ such that

- \blacksquare ELK classifies Sig($\mathcal{M}_1)$ with axioms in \mathcal{M}_1
- \blacksquare OWL 2 reasoner classifies Sig($\mathcal{M}_2)$ with axioms in \mathcal{M}_2

(日) (日) (日) (日) (日) (日) (日)

• \mathcal{M}_2 is as small as possible

-reduce workload of OWL 2 reasoner!

 $\blacksquare \operatorname{Sig}(\mathcal{M}_1) \cup \operatorname{Sig}(\mathcal{M}_2) = \operatorname{Sig}(\mathcal{O})$

-but never lose completenes!!

MODULES AS GLUE FOR REASONERS

- A module is a subset of an ontology that preserves entailments over a given signature Σ
- Modules based on syntactic locality can be extracted in polynomial time
- \perp -modules (based on \perp -locality) have a special property:

MODULES AS GLUE FOR REASONERS

- A module is a subset of an ontology that preserves entailments over a given signature Σ
- Modules based on syntactic locality can be extracted in polynomial time
- \perp -modules (based on \perp -locality) have a special property:

If
$$A \in \Sigma$$
 and $\mathcal{O} \models A \sqsubseteq B$
then
 $\mathcal{M}_{\mathcal{O},\Sigma}^{\perp} \models A \sqsubseteq B$

MODULES AS GLUE FOR REASONERS

- A module is a subset of an ontology that preserves entailments over a given signature Σ
- Modules based on syntactic locality can be extracted in polynomial time
- \perp -modules (based on \perp -locality) have a special property:

$$\begin{array}{l} \text{If } A \in \Sigma \text{ and } \mathcal{O} \models A \sqsubseteq B \\ \text{then} \\ \mathcal{M}_{\mathcal{O}, \Sigma}^{\perp} \models A \sqsubseteq B \end{array}$$

even if *B* wasn't in Σ !

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

\perp -MODULES IN ACTION!

MORe integrates an OWL 2 Reasoner and an EL reasoner \longrightarrow currently HermiT/JFact and ELK finding two subsets $\mathcal{M}_1, \mathcal{M}_2 \subseteq \mathcal{O}$ such that

(日) (日) (日) (日) (日) (日) (日)

- **ELK** classifies $Sig(M_1)$ with M_1
- OWL 2 reasoner classifies $Sig(\mathcal{M}_2)$ with \mathcal{M}_2
- \mathcal{M}_2 is as small as possible

-reduce workload of OWL 2 reasoner!

 $\blacksquare \ \text{Sig}(\mathcal{M}_1) \cup \text{Sig}(\mathcal{M}_2) = \text{Sig}(\mathcal{O})$

-but never lose completenes!!

\perp -MODULES IN ACTION!

MORe integrates an OWL 2 Reasoner and an EL reasoner \longrightarrow currently HermiT/JFact and ELK finding a subset $\Sigma_{EL} \subseteq Sig(\mathcal{O})$ such that

- ELK classifies Σ_{EL} with $\mathcal{M}_{\mathcal{O},\Sigma_{EL}}^{\perp}$
- OWL 2 reasoner classifies $\overline{\Sigma_{EL}} = \text{Sig}(\mathcal{O}) \setminus \Sigma_{EL}$ with $\mathcal{M}_{\mathcal{O}}^{\perp} \overline{\Sigma_{EL}}$

(日) (日) (日) (日) (日) (日) (日)

- $\mathcal{M}_{\mathcal{O},\overline{\Sigma_{\mathsf{EL}}}}^{\perp}$ is as small as possible —reduce workload of OWL 2 reasoner!
- $\ \ \, \Sigma_{\rm EL}\cup\overline{\Sigma_{\rm EL}}$

-but never lose completenes!!

EL-SIGNATURES

We call $\Sigma_{\mathsf{EL}} \subseteq \mathsf{Sig}(\mathcal{O})$ an EL-signature for \mathcal{O} if $\mathcal{M}_{[\mathcal{O}, \Sigma_{\mathsf{EL}}]}^{\perp}$ is in EL.

EL-SIGNATURES

We call $\Sigma_{\mathsf{EL}} \subseteq \mathsf{Sig}(\mathcal{O})$ an EL-signature for \mathcal{O} if $\mathcal{M}_{[\mathcal{O}, \Sigma_{\mathsf{FL}}]}^{\perp}$ is in EL.

Computing an EL-signature is like extractracting a module - but backwards!

- Computing a module: start with a signature Σ, obtain the subset of "axioms for that signature" in O.
- Computing an EL-signature: start with a set O' ⊆ O of axioms that we DON'T want, obtain a signature (whose ⊥-module contains no axioms from O')

MORe does not always compute maximal EL signatures, but it computes fairly large ones very fast.

DISCUSSION

 EL-signatures obtained typically large when most axioms are in EL.

 \longrightarrow developed heuristics that seem to lead to larger EL-signatures in most cases

 Integrated reasoners are used as black boxes: any OWL reasoner, and any EL reasoner could be integrated in MORe's infrastructure as is —and only minor alterations would be needed to integrate a reasoner for a different profile.

EXPERIMENTAL RESULTS

	Expressivity	$ \text{Sig}(\mathcal{O}) $	$ \mathcal{O} $	$ \mathcal{O} \setminus \mathcal{O}_{ELK} $	$ \mathcal{M}_{\text{OWL2}} $
Gazetteer	$\mathcal{ALE}+$	517,039	652,361	0	0%
Cardiac Electrophys.	$\mathcal{SHF}(\mathcal{D})$	81,020	124,248	22	1%
Protein	S	35,205	46,114	15	22%
Biomodels	SRIF	187,577	439,248	22,104	45%
Cell Cycle v0.95	SRI	144,619	511,354	1	<0.1%
Cell Cycle v2.01	SRI	106,517	624,702	9	98%
NCI v09.12d	$\mathcal{SH}(\mathcal{D})$	77,571	109,013	4,682	58%
NCI v13.03d	$\mathcal{SH}(\mathcal{D})$	97,652	136,902	158	57%
	ALCR	291,216	291,185	15	3%
SNOMED+LUCADA	$\mathcal{ALCRIQ}(\mathcal{D})$	309,405	550,453	122	0.1%

EXPERIMENTAL RESULTS

	MORe _{HermiT}		HermiT	MORe _{Pellet}		Pellet	
	HermiT	total	пеппп	Pellet	total	Fellet	
Gazetteer	0	20.6	651	0	20.3	1,414	
Cardiac Electrophys.	0.3	6.3	22.7	0.3	5.5	11.0	
Protein	2.0	4.8	10.0	2.0	4.7	2,920	
Biomodels	377	487	582	373	483	1,915	
Cell Cycle v0.95	<0.1	9.9	mem	<0.1	10.4	3,433	
Cell Cycle v2.01	mem	mem	mem	mem	mem	3,435	
NCI v09.12d	244	252	261	256	266	93.6	
NCI v13.03d	45.1	62.7	68.4	45.7	62.9	191	
SNOMED ₁₅ SNOMED+LUCADA	4.5	25.4	1,395	4.4	22.9	4,314	
	1.1	28.8	1,302	1.2	29.2	mem	

ONGOING WORK

Currently developing a new algorithm that should reduce the workload of the OWL reasoner even further by computing

 \longrightarrow a lower and upper bound for the classification

and

 \longrightarrow a very reduced set of axioms enough to check the dubious subsumption relations

 \sim alternative notion of module, wouldn't preserve all kinds of entailments, only subsumption between atomic classes

Thanks!