
MORe: A MODULAR OWL REASONER FOR

ONTOLOGY CLASSIFICATION

Ana Armas Romero, Bernardo Cuenca Grau,
Ian Horrocks, Ernesto Jiménez Ruiz

Department of Computer Science, University of Oxford

July 2013

OWL 2 REASONERS

VS

PROFILE SPECIFIC REASONERS

OWL 2 reasoners
HermiT, Pellet, Fact++, JFact, RacerPro...

Complete for OWL 2
Highly optmized, but still too slow for some ontologies.

Profile specific reasoners
ELK, CEL (EL), Jena (RL), OWLIM (RL, QL)

Extremely efficient and scalable
No completeness guarantee if ontology contains even just a
few axioms outside relevant fragment.

OWL 2 REASONERS

VS

PROFILE SPECIFIC REASONERS

OWL 2 reasoners
HermiT, Pellet, Fact++, JFact, RacerPro...

Complete for OWL 2
Highly optmized, but still too slow for some ontologies.

Profile specific reasoners
ELK, CEL (EL), Jena (RL), OWLIM (RL, QL)

Extremely efficient and scalable
No completeness guarantee if ontology contains even just a
few axioms outside relevant fragment.

OWL 2 REASONER

+
PROFILE SPECIFIC REASONER

MORe integrates an OWL 2 Reasoner and an EL reasoner
−→ currently HermiT/JFact and ELK

finding two subsetsM1,M2 ⊆ O such that

ELK classifies Sig(M1) with axioms inM1

OWL 2 reasoner classifies Sig(M2) with axioms inM2

M2 is as small as possible
—reduce workload of OWL 2 reasoner!

Sig(M1) ∪ Sig(M2) = Sig(O)
—but never lose completenes!!

OWL 2 REASONER

+
PROFILE SPECIFIC REASONER

MORe integrates an OWL 2 Reasoner and an EL reasoner
−→ currently HermiT/JFact and ELK

finding two subsetsM1,M2 ⊆ O such that
ELK classifies Sig(M1) with axioms inM1

OWL 2 reasoner classifies Sig(M2) with axioms inM2

M2 is as small as possible
—reduce workload of OWL 2 reasoner!

Sig(M1) ∪ Sig(M2) = Sig(O)
—but never lose completenes!!

OWL 2 REASONER

+
PROFILE SPECIFIC REASONER

MORe integrates an OWL 2 Reasoner and an EL reasoner
−→ currently HermiT/JFact and ELK

finding two subsetsM1,M2 ⊆ O such that
ELK classifies Sig(M1) with axioms inM1

OWL 2 reasoner classifies Sig(M2) with axioms inM2

M2 is as small as possible
—reduce workload of OWL 2 reasoner!

Sig(M1) ∪ Sig(M2) = Sig(O)
—but never lose completenes!!

OWL 2 REASONER

+
PROFILE SPECIFIC REASONER

MORe integrates an OWL 2 Reasoner and an EL reasoner
−→ currently HermiT/JFact and ELK

finding two subsetsM1,M2 ⊆ O such that
ELK classifies Sig(M1) with axioms inM1

OWL 2 reasoner classifies Sig(M2) with axioms inM2

M2 is as small as possible
—reduce workload of OWL 2 reasoner!

Sig(M1) ∪ Sig(M2) = Sig(O)
—but never lose completenes!!

OWL 2 REASONER

+
PROFILE SPECIFIC REASONER

MORe integrates an OWL 2 Reasoner and an EL reasoner
−→ currently HermiT/JFact and ELK

finding two subsetsM1,M2 ⊆ O such that
ELK classifies Sig(M1) with axioms inM1

OWL 2 reasoner classifies Sig(M2) with axioms inM2

M2 is as small as possible
—reduce workload of OWL 2 reasoner!

Sig(M1) ∪ Sig(M2) = Sig(O)
—but never lose completenes!!

MODULES AS GLUE FOR REASONERS

A module is a subset of an ontology that preserves
entailments over a given signature Σ

Modules based on syntactic locality can be extracted in
polynomial time

⊥-modules (based on ⊥-locality) have a special property:

If A ∈ Σ and O |= A v B
then

M⊥
O,Σ |= A v B

even if B wasn’t in Σ!

MODULES AS GLUE FOR REASONERS

A module is a subset of an ontology that preserves
entailments over a given signature Σ

Modules based on syntactic locality can be extracted in
polynomial time

⊥-modules (based on ⊥-locality) have a special property:

If A ∈ Σ and O |= A v B
then

M⊥
O,Σ |= A v B

even if B wasn’t in Σ!

MODULES AS GLUE FOR REASONERS

A module is a subset of an ontology that preserves
entailments over a given signature Σ

Modules based on syntactic locality can be extracted in
polynomial time

⊥-modules (based on ⊥-locality) have a special property:

If A ∈ Σ and O |= A v B
then

M⊥
O,Σ |= A v B

even if B wasn’t in Σ!

⊥-MODULES IN ACTION!

MORe integrates an OWL 2 Reasoner and an EL reasoner
−→ currently HermiT/JFact and ELK

finding two subsetsM1,M2 ⊆ O such that
ELK classifies Sig(M1) withM1

OWL 2 reasoner classifies Sig(M2) withM2

M2 is as small as possible
—reduce workload of OWL 2 reasoner!

Sig(M1) ∪ Sig(M2) = Sig(O)
—but never lose completenes!!

⊥-MODULES IN ACTION!

MORe integrates an OWL 2 Reasoner and an EL reasoner
−→ currently HermiT/JFact and ELK

finding a subset ΣEL ⊆ Sig(O) such that
ELK classifies ΣEL withM⊥

O,ΣEL

OWL 2 reasoner classifies ΣEL = Sig(O) \ ΣEL withM⊥
O,ΣEL

M⊥
O,ΣEL

is as small as possible
—reduce workload of OWL 2 reasoner!

ΣEL ∪ ΣEL

—but never lose completenes!!

EL-SIGNATURES

We call ΣEL ⊆ Sig(O) an EL-signature for O ifM⊥
[O,ΣEL] is in EL.

Computing an EL-signature is like extractracting a module - but
backwards!

Computing a module: start with a signature Σ, obtain the
subset of “axioms for that signature” in O.
Computing an EL-signature: start with a set O′ ⊆ O of
axioms that we DON’T want, obtain a signature (whose
⊥-module contains no axioms from O′)

MORe does not always compute maximal EL signatures, but it
computes fairly large ones very fast.

EL-SIGNATURES

We call ΣEL ⊆ Sig(O) an EL-signature for O ifM⊥
[O,ΣEL] is in EL.

Computing an EL-signature is like extractracting a module - but
backwards!

Computing a module: start with a signature Σ, obtain the
subset of “axioms for that signature” in O.
Computing an EL-signature: start with a set O′ ⊆ O of
axioms that we DON’T want, obtain a signature (whose
⊥-module contains no axioms from O′)

MORe does not always compute maximal EL signatures, but it
computes fairly large ones very fast.

DISCUSSION

EL-signatures obtained typically large when most axioms
are in EL.
−→ developed heuristics that seem to lead to larger

EL-signatures in most cases

Integrated reasoners are used as black boxes:
any OWL reasoner, and
any EL reasoner
could be integrated in MORe’s infrastructure as is —and
only minor alterations would be needed to integrate a
reasoner for a different profile.

EXPERIMENTAL RESULTS

Expressivity |Sig(O)| |O| |O \ OELK| |MOWL2|
Gazetteer ALE+ 517,039 652,361 0 0%
Cardiac Electrophys. SHF(D) 81,020 124,248 22 1%
Protein S 35,205 46,114 15 22%
Biomodels SRIF 187,577 439,248 22,104 45%
Cell Cycle v0.95 SRI 144,619 511,354 1 <0.1%
Cell Cycle v2.01 SRI 106,517 624,702 9 98%
NCI v09.12d SH(D) 77,571 109,013 4,682 58%
NCI v13.03d SH(D) 97,652 136,902 158 57%
SNOMED15t ALCR 291,216 291,185 15 3%
SNOMED+LUCADA ALCRIQ(D) 309,405 550,453 122 0.1%

EXPERIMENTAL RESULTS

MOReHermiT HermiT MORePellet PelletHermiT total Pellet total
Gazetteer 0 20.6 651 0 20.3 1,414
Cardiac Electrophys. 0.3 6.3 22.7 0.3 5.5 11.0
Protein 2.0 4.8 10.0 2.0 4.7 2,920
Biomodels 377 487 582 373 483 1,915
Cell Cycle v0.95 <0.1 9.9 mem <0.1 10.4 3,433
Cell Cycle v2.01 mem mem mem mem mem 3,435
NCI v09.12d 244 252 261 256 266 93.6
NCI v13.03d 45.1 62.7 68.4 45.7 62.9 191
SNOMED15t 4.5 25.4 1,395 4.4 22.9 4,314
SNOMED+LUCADA 1.1 28.8 1,302 1.2 29.2 mem

ONGOING WORK

Currently developing a new algorithm that should reduce the
workload of the OWL reasoner even further by computing

−→ a lower and upper bound for the classification

and

−→ a very reduced set of axioms enough to check the
dubious subsumption relations

∼ alternative notion of module, wouldn’t preserve all kinds
of entailments, only subsumption between atomic classes

Thanks!

