A Transformation Approach for Classifying ALCHI(D) Ontologies with a Consequence-based ALCH Reasoner

Weihong Song, Bruce Spencer, Weichang Du {song.weihong, bspencer, wdu}@unb.ca

Faculty of Computer Science
University of New Brunswick
Canada

Overview

- Background: CB-based techniques provide efficient classification for limited DL languages such as ALCH but not ALCHI(D)
- Goal: create an ALCHI(D) reasoner using a CBbased ALCH reasoner (ConDOR) as a black box
- Approach: transform inverse role axioms and (a subset of) OWL2 datatypes and facets into ALCH axioms and classify transformed ontology with ConDOR
- We can guarantee soundness and completeness of classification results for I and a subset of D

Overall Procedure

Three Stages:

Stage 1: Transform ALCHI(D) ontology O into an ALCHI ontology

$$\mathcal{O}_{\mathcal{D}}^-$$
 s.t. $\mathcal{O} \models A \sqsubseteq B$ iff $\mathcal{O}_{\mathcal{D}}^- \models A \sqsubseteq B$

Stage2: Transform the ALCHI ontology $\mathcal{O}_{\mathcal{D}}^-$ into an ALCH ontology

$$\mathcal{O}_{\mathcal{I}\mathcal{D}}^-$$
 s.t. $\mathcal{O}_{\mathcal{D}}^- \models A \sqsubseteq B$ iff $\mathcal{O}_{\mathcal{I}\mathcal{D}}^- \models A \sqsubseteq B$

Stage3: Classify the ALCH ontology $\mathcal{O}_{\mathcal{ID}}^-$ with ConDOR

The supported datatype features are:

- datatypes owl:real
 - facets
 - owl:rational, xsd:decimal, xsd:integer
 - comparison facets
 - xsd:minInclusive, xsd:maxInclusive, xsd:minExclusive, xsd:maxExclusive
- datatype xsd:string
- datatype xsd:boolean

Stage 1: Eliminate Datatypes

- Step1: encode features and data ranges
 - Encode features into roles and data ranges into concepts
 - Three types of atomic data ranges:
 - d, e.g., real
 - d[f], e.g., real[rational], real[>2]
 - {**v**}, e.g., {1}

Encoding φ for atomic concepts/roles/features/data ranges

$$\varphi(\top_{\mathcal{D}}) = \top \qquad \varphi(d[f]) = A_d \sqcap A_f \qquad \varphi(\top) = \top \qquad \varphi(A) = A$$

$$\varphi(d) = A_d \qquad \varphi(\{v\}) = A_v \qquad \qquad \varphi(R) = R \qquad \varphi(F) = R_F$$

Stage 1: Eliminate Datatypes

- Step 2: Add strengthening axioms to preserve the subsumptions between atomic concepts in O.
 - The strengthening axioms show the implicit relationships among data ranges before encoding
 - The purpose of strengthening axioms is to ensure data-range-relationship-preserving property

For any
$$ar_1, \ldots, ar_n, ar'_1, \ldots, ar'_m \in ADR_d(\mathcal{O})$$
, if $\left(\left(\prod_{i=1}^n ar_i\right) \sqcap \left(\prod_{j=1}^m \neg ar'_j\right)\right)^{\mathcal{D}} = \emptyset$, then $\left(\prod_{i=1}^n \varphi(ar_i)\right) \sqcap \left(\prod_{j=1}^m \neg \varphi(ar'_j)\right)$ is unsatisfiable

The property is sufficient for preserving completeness

Stage 1: Example

Integer 1, 2

Ontology Before Encoding:

(1)
$$B_1 \sqsubseteq B_{sup}$$
 (2) $B_1 \equiv C \sqcap \exists F.\{1\}$ (3) $B \equiv C \sqcap \exists F | (real[int] \sqcap real[>0] \sqcap real[\le 2])$

$$(4) B_2 \sqsubseteq B_{sup} \quad (5) B_2 \equiv C \sqcap \exists F.\{2\}$$

Normalize data range using only the form > a: $real \le 2 = real \sqcap \neg real \ge 2$;

So axiom (3) changes to : $B \equiv C \sqcap \exists F.(real[int] \sqcap real[>0] \sqcap \neg real[>2])$

Ontology After Encoding:

$$(1) \ B_1 \sqsubseteq B_{sup} \quad (2') \ B_1 \equiv C \sqcap \exists R_F. A_1 \quad (3') \ B \equiv C \sqcap \exists R_F. (A_{real} \sqcap A_{int} \sqcap A_{>0} \sqcap \neg A_{>2})$$

(4)
$$B_2 \sqsubseteq B_{sup}$$
 (5') $B_2 \equiv C \sqcap \exists R_F.A_2$

Types of Strengthening Axioms

- Relationships among real[int], real[dec] and real[rat]
 - e.g. $A_{int} \sqsubseteq A_{dec}$
- Relationships among DRs of the form real[>a]
 - e.g. $A_{>2} \sqsubseteq A_{>0}$
- Relationships between {v} and real[int]/real[dec]/real[rat]
 - e.g. $A_1 \sqsubseteq A_{int}$
- Relationships between {v} and real[>a]
 - e.g. $A_1 \sqsubseteq A_{>0}$ $A_1 \sqcap A_{>2} \sqsubseteq \bot$

Types of Strengthening Axioms

- Relationships among DRs of the form {v}
 - e.g. $A_1 \sqcap A_2 \sqsubseteq \bot$
- Other relationships
 - e.g. $A_{real} \sqcap A_{int} \sqcap A_{>0} \sqcap \neg A_{>2} \sqcap (\neg A_1 \sqcap \neg A_2) \sqsubseteq \bot$

Strengthening Axioms for the Example

Normalized Ontology:

(1)
$$B_1 \sqsubseteq B_{sup}$$
 (2) $B_1 \equiv C \sqcap \exists F.\{1\}$ (3*) $B \equiv C \sqcap \exists F.(real[int] \sqcap real[> 0] \sqcap \neg real[> 2])$

(4)
$$B_2 \sqsubseteq B_{sup}$$
 (5) $B_2 \equiv C \sqcap \exists F.\{2\}$

Encoding:
$$\{1\} \rightarrow A_1, \{2\} \rightarrow A_2, real[> 0] \rightarrow A_{real} \sqcap A_{>0},$$

 $real[> 2] \rightarrow A_{real} \sqcap A_{>2}, real[int] \rightarrow A_{real} \sqcap A_{int}$

Strengthening axioms added based on our strengthening algorithm for real numbers:

$$(6) A_1 \sqsubseteq A_{int} \tag{7} A_2 \sqsubseteq A_{int}$$

$$(8) A_{>2} \sqsubseteq A_{>0}$$

$$(9) A_{real} \sqcap A_{int} \sqcap A_{>0} \sqcap \neg A_{>2} \sqcap (\neg A_1 \sqcap \neg A_2) \sqsubseteq \bot$$

$$(10) A_1 \sqsubseteq A_{>0} \qquad (11) A_1 \sqcap A_{>2} \sqsubseteq \bot$$

$$(12) A_2 \sqsubseteq A_{>0} \qquad (13) A_2 \sqcap A_{>2} \sqsubseteq \bot$$

$$(14) A_1 \sqcap A_2 \sqsubseteq \bot$$

Stage 2: Transform Inverse Role

- Polynomial elimination of inverses
 - Calvanese et al[1],
 - Tuned for tableau reasoning, Ding [2]
- We eliminate inverse role using normalized form

$$\prod A_i \sqsubseteq \coprod B_j$$
, $A \sqsubseteq \exists r.B$, $\exists r.A \sqsubseteq B$, $A \sqsubseteq \forall r.B$, $r \sqsubseteq s$ and $r^- = r'$

tuned for consequence-based reasoning.

^[1] Diego Calvanese, Giuseppe De Giacomo, Riccardo Rosati: A Note on Encoding Inverse Roles and Functional Restrictions in ALC Knowledge Bases. Description Logics 1998
[2] Yu Ding's PhD Thesis, http://users.encs.concordia.ca/~haarslev/students/Yu_Ding.pdf
[3] Yu Ding, Volker Haarslev, Jiewen Wu: A New Mapping from ALCI to ALC. Description Logics 2007

Stage 2: Transform Inverse Role

- Complement role hierarchy
 - $Add r^* = r' if r^- = r', r^- = r^*$
 - Add $r' \sqsubseteq s'$ if $r^- = r'$, $s^- = s'$ and $r \sqsubseteq s$

Add axioms based on the equivalence

$$A \sqsubseteq \forall r.B \Leftrightarrow \exists r^-.A \sqsubseteq B$$

Proof of Soundness

• For datatypes, encoding ensure a countermodel of $O \models A \sqsubseteq B$ can be converted to a countermodel of $\mathcal{O}_{\overline{D}} \models A \sqsubseteq B$

 For inverse roles, soundness is obvious since all strengthening axioms are implied by the original ontology

Theoretical Proof of Completeness

- For both datatypes and inverse roles, strengthening axioms enables conversion of countermodels
 - A countermodel for $\mathcal{O}_{\mathcal{I}\mathcal{D}}^- \models A \sqsubseteq B$ to a countermodel of $\mathcal{O}_{\mathcal{D}}^- \models A \sqsubseteq B$ to a countermodel of $\mathcal{O} \models A \sqsubseteq B$
- Proving data-range preserving property: case-bycase analysis of combinations of atomic data ranges

Evaluation

Comparison of classification performance of $\mathcal{ALCHI}(\mathcal{D})$ ontologies

	# Logical	# Axioms	# Axioms				
	Axioms	Added for	Added for	HermiT	Pellet	FaCT++	WSClassifier
		Datatypes	Inverse Roles				
Wine	181	2	7	1.160	0.430	0.005	0.400
ACGT	5065	3	366	9.603	2.955	*	1.945
OBI	9899	2	257	3.166	45.261	*	8.835
Galen-Heart	10493	0	569	123.628	_	_	2.779
Full-Galen	36986	68	7547	_	_	_	16.774
FMA-C	116532	9	1027	_	_	_	32.74

Note: "-": out of time or memory "*": some datatypes are not supported

Highly cyclic ontologies

Conclusion and Discussion

WSClassifier

- Transforms common OWL2 datatypes, facets and inverse role axioms from ALCHID into ALCH
- Classifies using an ALCH reasoner

Results

- Preserves soundness and completeness for ALCHI(D)
- Outperforms tableau-based reasoners on large and highly cyclic ontologies.

Future work

- Extensions to other datatypes and facets
- Further optimization

Thank you!