
Jörg Schönfisch

ORE Workshop 2013

Ulm, Germany, 22.07.2013

Yet Another Rewriting Reasoner
YARR!

Agenda

Introduction | Query Rewriting | Architecture | Performance | Current Development

Introduction

Query Rewriting

Architecture & Implementation

Performance

Current development

Introduction

Introduction | Query Rewriting | Architecture | Performance | Current Development

We needed a reasoner for closed source customer projects

Requirements

Stable implementation

Liberal licensing

Reuse of existing architecture

Suitable for a collaborative and concurrent deployment
scenario

Motivation for implementing YARR

Introduction

Introduction | Query Rewriting | Architecture | Performance | Current Development

Query answering through query rewriting (Presto algorithm)

Support of the OWL 2 QL profile

Persistence in a relational database system (RDBMS)

SPARQL endpoint

Developed as part of a larger platform

YARR’s Features

Introduction

Introduction | Query Rewriting | Architecture | Performance | Current Development

SPARQL 1.1 support limited to SELECT and ASK queries

UPDATE, CONSTRUCT and DESCRIBE are not supported

Property paths (especially negation of properties) not implemented

Some built-in functions are not implemented, yet

abs, ceil, floor, …

Hashing functions

Some String operations

…

YARR’s Limitations

Introduction

Introduction | Query Rewriting | Architecture | Performance | Current Development

Enables conjunctive queries to be answered in LogSpace using standard
relational database technology

Suitable for applications where relatively lightweight ontologies are used to
organize large numbers of individuals and where it is useful or necessary to
access the data directly via relational queries (i.e. SQL)

Limitations:

No cardinality restrictions

No (disjoint) unions

No transitive properties

…

Algorithms and prototypes for OWL 2 QL reasoning exist, but they are not
easily available for commercial use in closed source products and customer
projects

OWL 2 QL Profile

Query Rewriting

Introduction | Query Rewriting | Architecture | Performance | Current Development

Getting complete and sound answers from the database requires rewriting of
the query to also fetch knowledge only implicitly defined by the TBox and the
ABox

Query Rewriting expands the query so that implicit facts are also retrieved
from the ABox

Features of Query Rewriting

The ABox is not involved in the reasoning step during query answering

Changes in the knowledge base are instantly reflected in query results

Changes create no overhead (e.g. removal of old inferences)

Only read access to the data is needed

No preprocessing of the data required

Trades less storage space for the knowledge base for more complex queries

Preliminaries

Introduction | Query Rewriting | Architecture | Performance | Current Development

SPARQL Query:
SELECT ?athlete ?games

WHERE { ?event hasGoldWinner ?athlete ;

 occurredInGames ?games .

 ?athlete isRepresentativeOf Germany . }

(Relevant) TBox axioms:
InverseProperties(hasGoldWinner,wonGold)

InverseProperties(isRepresentativeOf,hasRepresentative)

Translation to Datalog:
q(?games,?event) :- hasGoldWinner(?event,?athlete),

 occuredInGames(?event,?games),

 isRepresentativeOf(?athlete,Germany)

Rewriting Example

Preliminaries

Introduction | Query Rewriting | Architecture | Performance | Current Development

Rewritten Datalog after applying the Tbox axioms:
q(?games,?event) :- occuredInGames(?event,?games),

 view_1(?event,?athlete),

 view_2(?athlete)

view_1(?event,?athlete) :- hasGoldWinner(?event,?athlete)

view_1(?event,?athlete) :- wonGold(?athlete,?event)

view_2(?athlete) :- isRepresentativeOf(?athlete,Germany)

view_2(?athlete) :- hasRepresentative(Germany,?athlete)

The translation to SQL results in a query with 24 subselects and altogether 50 join
operations.

Rewriting Example

Preliminaries

Introduction | Query Rewriting | Architecture | Performance | Current Development

Alternative approach to rewriting: Materialization

Everything that can be inferred about the data is stored explicitly beforehand

Queries can be executed as-is

Changes in the data are more complex as they influence the inferences

Advantages of Query Rewriting

Changes to instances have no impact on the internal state of the reasoner

Highly concurrent editing and reasoning

Requires potentially less storage space

Size of the ABox is irrelevant for the reasoning step

Requires no additional steps during load time of the data

Disadvantages

Potentially more complex queries

Query Rewriting vs Materialization

Architecture

Introduction | Query Rewriting | Architecture | Performance | Current Development

Reasoner Architecture

SPARQL Endpoint

(any)
RDBMS

Editing Services

SPARQL to Datalog

Query Rewriting

Datalog to SQL

Persistence Mapper

http://hsqldb.org/images/hypersql_logo.png

Architecture

Introduction | Query Rewriting | Architecture | Performance | Current Development

Based on the structure of the OWL 2 Metamodel

Every part of the metamodel is stored in a separate table

Facilitates editing of the knowledgebase

Consists of 43 tables

6 tables for each type of entity

4 tables for each type of assertion

2 tables for literals

21 tables for different axioms (domain, range, equivalency, …)

10 auxiliary tables

Database Schema

Performance

Introduction | Query Rewriting | Architecture | Performance | Current Development

Sp2Bench SPARQL Benchmark

0,0010

0,0100

0,1000

1,0000

10,0000

100,0000

1000,0000

10000,0000

1 2 3a 3b 3c 4 5a 5b 6 7 8 9 10 11 12a 12b 12c

se
c

10k YARR 10k Stardog 250k YARR 250k Stardog 5M YARR 5M Stardog

Current development

Introduction | Query Rewriting | Architecture | Performance | Current Development

Further support for SPARQL 1.1 Queries

Negation in Property Paths

Implement more built-in functions

Support for CONSTRUCT

Performance improvement

Caching

Optimizations in the SQL translator

Analysis of slow queries

Implementing adapters for ontology-based data access (OBDA)

Possibly supporting R2RML (W3C mapping language from RDF to relational
data)

Thank You!

Performance

Sp2Bench SPARQL Benchmark

0,0001

0,0010

0,0100

0,1000

1,0000

10,0000

100,0000

1000,0000

10000,0000

1 2 3a 3b 3c 4 5a 5b 6 7 8 9 10 11 12a 12b 12c

se
c

10k LSP 10k OWLIM 250k LSP 250k OWLIM 5M LSP 5M OWLIM

Architecture

(any)
RDBMS

Persistence Mapper
(Hibernate / jOOQ)

Editing Services
SPARQL Querying

Services

OWL 2 QL
Query Rewriting
(Presto Algorithm),
Sesame SPARQL Parser

Fulltext Search Services

O
n

to
lo

gy

V
is

u
al

iz
at

io
n

s

Lucene based
Search Engine CRUD Operations

on RDBMS

Fa
ce

te
d

 S
ea

rc
h

A
-B

o
x

Ed
it

in
g

T-
B

o
x

Ed
it

in
g

O
W

L
Im

p
o

rt
 &

Ex

p
o

rt
 (

O
W

L
A

P
I)

Se
ar

ch
 U

I

…

…

…

Tested with
Oracle,
Postgresql,
HSQLDB

Pure Java Application
UI built with Vaadin

http://lucene.apache.org/java/
http://hsqldb.org/images/hypersql_logo.png

