Android goes Semantic: DL Reasoners on Smartphones

Fernando Bobillo, fbobillo@unizar.es

Department of Computer Science and Systems Engineering University of Zaragoza, Spain

with Roberto Yus, Carlos Bobed, Guillermo Esteban and Eduardo Mena

ORE 2013 Ulm (Germany) July 2013

Departamento de Informática e Ingeniería de Sistemas Universidad Zaragoza

- Introduction
- DL Reasoning on Android
- 3 Experiments
- Conclusions and future work

- Introduction
- DL Reasoning on Android
- 3 Experiments
- Conclusions and future work

Motivation

- Objective: enable mobile devices with semantic reasoning capabilities
- Local reasoners are needed to be able to manage knowledge even when network disconnections make impossible to rely on other devices/computer
- Michele Ruta et al. implemented a mobile \mathcal{ALCN} reasoner from scratch
- We try to avoid these rewritings and investigate how to adapt existing DL reasoners to work on Android devices

Android and Java

- Android: popular operative system for smartphones and tablets (about 64 % of the share)
- Most semantic reasoners are implemented in Java
- Android libraries, and APIs are written in C, but it supports Java code as it uses a Java-like virtual machine (Dalvik)
- Dalvik runs dex-code and Java bytecodes can be converted to Dalvik-compatible .dex files
- However, Dalvik does not align to Java SE and so it does not support Java ME classes, AWT or Swing
- Running semantic APIs and reasoners on Android could require some rewriting efforts!

- Introduction
- DL Reasoning on Android
- 3 Experiments
- Conclusions and future work

Running Semantic APIs on Android

- OWL API 3.4.3 could be converted to Dalvik without any modifications and so, imported into an Android project directly.
- OWL API 2.2.0 (automatically imported by Pellet along with the OWL API 3.2.4) uses Java classes that are not supported by Dalvik
- Jena cannot be directly imported into an Android project, but there is a project called Androjena to port it to the Android platform

Running Reasoners on Android: Success

- JFact is a port of FaCT++ (written in C++): it works fine
- CB (in OCaml): can be compiled to native Android code and run using the tool adb (Android Debug Bridge)
- HermiT cannot be converted directly to Dalvik
 - References to unsupported Java classes
 - Runtime error of Dalvik when unmarshalling the objects serialized by dk.brics.automaton

Our solutions

- Remove the debug package of HermiT and its references
- Reimplement some methods of JAutomata class
- Reimplement the marshalling/unmarshalling methods

Running Reasoners on Android: Success

- Pellet cannot be converted directly to Dalvik as it uses 3 libraries that reference unsupported Java classes:
 - Jena: can be replaced by Androjena
 - OWL API 2.2.0: can be removed
 - JAXB: can be fixed
 - remove the JAXB .jar file
 - add to our Android project the source code of the java.xml.bind package and the Xerces library
 - Due to the limit of 65536 methods references per .dex file, add only the 9 classes that Pellet needs

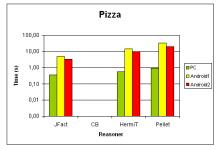
Running Reasoners on Android: Fail

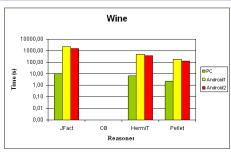
- RacerPro, KAON2, QUEST, TrOWL, fuzzyDL: reference unsupported Java classes
 - They cannot be directly converted and their source code was not publicly available for modifications
 - We noticed that they use some problematic libraries:
 - Jena (QUEST, TrOWL): could be replaced e.g. Androjena
 - Java RMI (KAON2): could be replaced e.g. LipeRMI
 - Xerces (QUEST): could be solved as in Pellet
 - Gurobi (fuzzyDL): no replacement

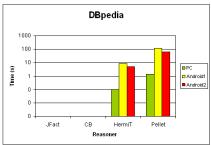
- Introduction
- DL Reasoning on Android
- 3 Experiments
- Conclusions and future work

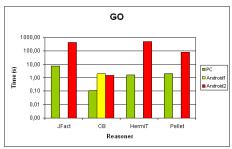
Experiments

- Very preliminary evaluation of the performance
- Task: classification of 5 ontologies
 - Pizza, Wine, DBpedia, GO, NCI
- 3 devices:
 - PC: Windows 64-bits, i5-2320 3.00GHz, 16GB RAM
 - Android1: Samsung Galaxy Tab, 1.0GHz, 512MB RAM, Android 2.3.3
 - Android2: Galaxy Nexus, 1.2GHz dual-core, 1GB RAM, Android 4.2.1


Classification time in PC and Android


		JFact	CB	HermiT	Pellet
	PC	0.37	≈0◊	0.57	0.97
Pizza	Android1	4.90	≈0◊	14.88	33.22
	Android2	3.42	≈0◊	10.43	20.77
	PC	10.39	≈0◊	6.54	2.22
Wine	Android1	2196.05	≈0◊	511.97	194.12
	Android2	1609.32	≈0◊	361.38	131.80
DBpedia	PC	UDT!	≈0	0.10	1.39
	Android1	UDT!	≈0	8.87	115.30
	Android2	UDT!	≈0	5.13	63.15
GO	PC	7.77	0.11	1.56	1.96
	Android1	OOM!	1.95	OOM!	OOM!
	Android2	435.60	1.47	487.98	83.97
NCI	PC	2.61	0.24	2.23	4.24
	Android1	OOM!	3.31	OOM!	OOM!
	Android2	OOM!	2.69	2020.48	OOM!


- \(\rightarrow\): incomplete reasoning
- OOM!: Out of Memory
- UDT!: Unsupported Data Type



Classification time in PC and Android

- Introduction
- DL Reasoning on Androic
- 3 Experiments
- Conclusions and future work

Conclusions and future work

- We have shown that current Android devices could be able to use most of the semantic reasoners although some manual work is usually needed
- The relative reasoning times are similar in mobile and non-mobile devices
- Main limitation on current smartphones/tablets: memory usage and processing requirements
- Possible trend: performance improved a 30% when updating from a 2010 Samsung Galaxy Tab to a 2011 Google Galaxy Nexus
- Future work: test current semantic reasoners on Android measuring other important aspects e.g. memory and battery usage

Comments?

Thank you very much for your attention

