

Copyright (c) Google

Yevgeny Kazakov, Pavel Klinov

University of Ulm | July 22, 2013

Experimenting with ELK Reasoner on an Android Phone

What we did and why we did it

Results

Yevgeny gets a new Google Nexus 4 for his birthday...

Yevgeny gets a new Google Nexus 4 for his birthday...

... and decides to run ELK out of curiosity

Yevgeny gets a new Google Nexus 4 for his birthday...

... and decides to run ELK out of curiosity

which was surprisingly easy since:

- ▶ it's Java, baby ⓒ
- no 3rd party libraries (except of log4j)

Yevgeny gets a new Google Nexus 4 for his birthday...

... and decides to run ELK out of curiosity

which was surprisingly easy since:

- ▶ it's Java, baby ⓒ
- ▶ no 3rd party libraries (except of log4j)

Also, we are doing something new here:

- demonstrate what a general reasoner can do on a phone
- while other reasoners were developed specifically for phones
- or even microcontrollers!

- desktops, laptops,...
- cloud services

July 22, 2013

Why should anyone care?

Why mobile devices? There're

- desktops, laptops,...
- cloud services

However, there're still use cases for portable devices:

- Context-aware processing: phone provides sensor data (GPS, etc.), ontology provides background knowledge
- ▶ Privacy: not all personal data should be sent to the cloud

Why should anyone care?

Why mobile devices? There're

- ▶ desktops, laptops,...
- cloud services

However, there're still use cases for portable devices:

- Context-aware processing: phone provides sensor data (GPS, etc.), ontology provides background knowledge
- ▶ Privacy: not all personal data should be sent to the cloud

Your phone can warm up your hands while classifying SNOMED!

Briefly about ELK

ELK is a Java-based concurrent reasoner for \mathcal{EL}^+

Distinctive features:

- Concurrency: loading/reasoning/taxonomy parallelized
- Memory efficiency: less GC activity on larger ontologies

Used in a number of projects:

SNOMED CT Virtual Fly Brain

Gene Ontology

Free and open-source: elk.semanticweb.org

Experimental Setup

Qualcomm Snapdragon S4 Pro 4 cores, 1.7 GHz, 2 GB RAM

Personal laptop

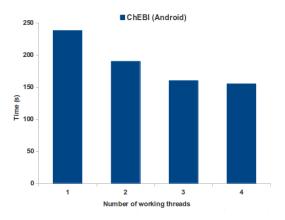
Intel Core i5-2520M 4 cores, 2.5Ghz, 8 GB RAM

Experimental Setup

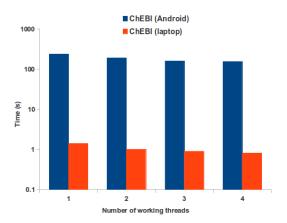
Google Nexus 4

Qualcomm Snapdragon S4 Pro 4 cores, 1.7 GHz, 2 GB RAM

Personal laptop


Intel Core i5-2520M 4 cores, 2.5Ghz, 8 GB RAM

	Ontology	Size
ChEBI	Chemical Entities of Biological Interest	67,182
EMAP	e-Mouse Atlas Project Ontology	13,730
Anatomy	the Fly Anatomy Ontology	19,137
GO	Gene Ontology (old)	28,896
EL-GALEN	\mathcal{EL}^+ version of GALEN	36,547


For ChEBI (67,182 axioms):

July 22, 2013

For ChEBI (67,182 axioms):

For ChEBI (67,182 axioms):

SNOMED CT completed in <1 hour (consuming all 500GB)

Summary

Well-engineered reasoners can work on mobile devices

The same optimizations work:

- concurrency
- reducing memory footprint
- ightharpoonup efficient representation of \mathcal{EL} rules

Summary

Well-engineered reasoners can work on mobile devices

The same optimizations work:

- concurrency
- reducing memory footprint
- ightharpoonup efficient representation of \mathcal{EL} rules

Performance difference not proportional to difference in computational power

- ▶ different GC, JIT,...
- slower IO
- ► slower/smaller CPU caches

Questions?