
UNIF 26

26th International Workshop on Unification

Proceedings

July 1, 2012

Manchester, United Kingdom

Santiago Escobar, Konstantin Korovin, Vladimir Rybakov (Eds.)

Preface

This volume contains the informal proceedings of the 26th International Work-

shop on Unification (UNIF’2012), held on 1st July 2012 in Manchester, UK.
The International Workshop on Unification was initiated in 1987 as a yearly

forum for researchers in unification theory and related fields to meet old and new
colleagues, to present recent (even unfinished) work, and to discuss new ideas
and trends. It is also a good opportunity for young researchers and researchers
working in related areas to get an overview of the current state of the art in
unification theory. The list of previous meetings can be found at the UNIF web
page: http://www.pps.univ-paris-diderot.fr/˜treinen/unif/.

Typically, the topics of interest include (but are not restricted to):

– Narrowing
– Matching
– Applications
– Constraint Solving
– Type reconstruction
– Typed Unification
– Foundations
– Unification in Special Theories
– Disunification
– Unification-Based approaches to Grammar
– General E-unification and Calculi
– Implementations
– Combination problem
– Higher-Order Unification

This year UNIF is a satellite event of the IJCAR 2012 conference which
is part of the Alan Turing Year 2012, and collocated with The Alan Turing
Centenary Conference. UNIF 2012 will be held on July 1st, at the, University of
Manchester, School of Computer Science, UK.

There were seven original contributions to the workshop. The revised versions
of these papers are included in this informal proceedings. Each contribution was
reviewed by at least three Program Committee members. This volume also in-
cludes short abstracts of two invited speakers: Franz Baader from the Technische
Universität Dresden, Germany and Emil Jer̆ábek from the Academy of Sciences
of the Czech Republic. We would like to thank them for having accepted our
invitation.

We would also like to thank all the members of the Program Committee
and all the referees for their careful work in the review process. Finally, we
express our gratitude to all members of the local organization of IJCAR 2012,
whose work has made the workshop possible. We thank EasyChair for providing
friendly environment for handling submissions and creating this proceedings.

June 2012 Santiago Escobar, Konstantin Korovin, Vladimir Rybakov

ii

Organization

Program Chairs

– Santiago Escobar
Universitat Politècnica de València (Spain)
email: sescobar@dsic.upv.es
homepage: http://users.dsic.upv.es/˜sescobar/

– Konstantin Korovin
The University of Manchester (UK)
email: korovin@cs.man.ac.uk
homepage: http://www.cs.man.ac.uk/˜korovink

– Vladimir Rybakov
Manchester Metropolitan University (UK)
email: V.Rybakov@mmu.ac.uk
homepage: http://www2.docm.mmu.ac.uk/STAFF/V.Rybakov/

Program Committee

Franz Baader Technische Universität Dresden, Germany
Christoph Benzmüller Free University Berlin, Germany
Santiago Escobar Universitat Politècnica de València, Spain
Maribel Fernández King’s College London, UK
Silvio Ghilardi Università degli Studi di Milano
Rosalie Iemho↵ Utrecht University, The Netherlands
Konstantin Korovin The University of Manchester, UK
Jordi Levy IIIA - CSIC, Spain
Christopher Lynch Clarkson University, USA
George Metcalfe Universität Bern, Switzerland
Paliath Narendran SUNY Albany, USA
Vladimir Rybakov Manchester Metropolitan University, UK

Additional Reviewers

Siva Anantharaman
Andrew Marshall

Barbara Morawska
Stefan Borgwardt

iii

Table of Contents

Unification and Related Problems in Modal and Description Logics 1
Franz Baader

Rules with Parameters in Modal Logic . 2
Emil Jeřábek

Recent Advances in Unification for the EL Family . 3
Franz Baader, Stefan Borgwardt and Barbara Morawska

Some Notes on Basic Syntactic Mutation . 4
Christopher Bouchard, Kimberly Gero and Paliath Narendran

Amissibility and unification in subvarieties of pseudocomplemented lattices 10
Leonardo Manuel Cabrer

On Matching Concurrent Traces . 14
Iliano Cervesato, Frank Pfenning, Jorge Luis Sacchini, Carsten Schuer-

mann and Robert Simmons

Unification modulo a property of the El Gamal Encryption Scheme 20
Serdar Erbatur, Santiago Escobar and Paliath Narendran

Bounded Second-Order Unification Using Regular Terms 26
Tomer Libal

Experiments in Admissibility . 31
George Metcalfe and Christoph Röthlisberger

iv

Unification and Related Problems

in Modal and Description Logics

(Invited Talk)

Franz Baader
baader@tcs.inf.tu-dresden.de

Theoretical Computer Science, TU Dresden, Germany

Abstract. Unification modulo equational theories was originally intro-

duced in automated deduction and term rewriting, but has recently also

found applications in modal logics and description logics. In this talk,

we review problems and results for unification in description logics, and

relate them to equational unification and unification in modal logics. Re-

lated problems, like disunification, rigid E-unification, and admissibility

of inference rules will also be considered.

References

1. Franz Baader and Silvio Ghilardi. Unification in modal and description logics.

Logic Journal of the IGPL, 19(6):705–730, 2011.

1

Rules with Parameters in Modal Logic

(Invited Talk)

Emil Jeřábek
jerabek@math.cas.cz

Institute of Mathematics of the Academy of Sciences, Czech Republic

Abstract. While admissible rules and unification are fairly well un-

derstood in transitive modal logics, rules with parameters have so far

received less attention. We know from the work of Rybakov that admis-

sibility of rules with parameters is decidable and complete sets of unifiers

are computable for basic transitive modal logics. In this talk, we will dis-

cuss other aspects of rules with parameters in basic transitive logics,

such as the computational complexity of admissibility and unification,

and bases of admissible rules.

2

Recent Advances in Unification for the EL Family

Franz Baader, Stefan Borgwardt, and Barbara Morawska

Theoretical Computer Science, TU Dresden, Germany
{baader,stefborg,morawska}@tcs.inf.tu-dresden.de

Abstract

Unification in Description Logics (DLs) has been proposed as an inference service that
can, for example, be used to detect redundancies in ontologies. For the DL EL, which
is used to define several large biomedical ontologies, unification is NP-complete. Several
algorithms that solve unification in EL have previously been presented. In this paper,
we summarize recent extensions of these algorithms that can deal with general concept
inclusion axioms (GCIs), role hierarchies (H), and transitive roles (R+). For the algorithms
to be complete, however, the ontology consisting of the GCIs and role axioms needs to
satisfy a certain cycle restriction.

1 Introduction and Preliminaries

The description logic (DL) EL offers the constructors conjunction (CuD), existential restriction
(9r.C), and the top concept (>) to build concept descriptions, starting with a set of concept
names NC and role names NR. Although quite inexpressive compared to other DLs, EL is used
to define biomedical ontologies, such as the large medical ontology SNOMED CT.1 From the
computational point of view, EL has the advantage over more expressive DLs that important
inference problems, such as the subsumption problem, are polynomial, even in the presence of
background knowledge formulated using so-called general concept inclusion axioms [12]. The EL
family of description logics consists of several logics that extend EL by means of expressiveness
that are useful for defining medical ontologies, but which do not increase the complexity of
reasoning [7].

In all logics of the EL family, concept descriptions are interpreted by interpretations I as
subsets of a domain �I . Each concept name A is assigned a set AI ✓ �I and each role name r

a binary relation r

I ✓ �I ⇥�I . Complex concept descriptions are then interpreted as follows:
>I = �I , (C u D)I = C

I \ D

I , and (9r.C)I = {x 2 �I | 9y 2 �I : (x, y) 2 r

I ^ y 2 C

I}.
For example, the concept description Patient u 9finding.(Injury u 9location.Head) may be used to
describe the set of all patients with a head injury.

The most expressive member of the EL family of description logics for which unification
algorithms are available is ELHR+ . The concept descriptions of ELHR+ are built in the same
way as in EL. The logics differ in the kind of axioms that are allowed in the background
ontologies. A general concept inclusion axiom (GCI) is of the form C v D for two concept
descriptions C,D and is satisfied by an interpretation I if CI ✓ D

I . A role inclusion axiom

is of the form r � r v r (transitivity axiom) or r1 v r2 (role hierarchy axiom) and is satisfied
by I if r

I � r

I ✓ r

I or r

I
1 ✓ r

I
2 , respectively. An ELHR+

-ontology O is a finite set of such
axioms. Such an ontology is an EL-ontology if it contains no role inclusions. An interpretation
is a model of an ontology if it satisfies all its axioms. Ontologies are used to express background
knowledge about an application domain. For example, the GCI

9finding.9severity.Severe v 9status.Emergency (1)
1see http://www.ihtsdo.org/snomed-ct/

3

expresses that every severe finding constitutes an emergency situation and the role inclusion
axiom partOf � partOf v partOf says that the role partOf should be interpreted as a transitive
binary relation.

In the following, we consider an arbitrary ELHR+ -ontology O. A concept description C is
subsumed by a concept description D w.r.t. O (written C vO D) if every model of O satisfies
the GCI C v D. We say that C is equivalent to D w.r.t. O (written C ⌘O D) if C vO D and
D vO C. If O is empty, we also write C v D and C ⌘ D instead of C vO D and C ⌘O D.

Unification

Unification in DLs has been proposed as a tool to detect redundancies in ontologies [11]. For
example, assume that the following two concept descriptions were introduced independently
into an ontology:

9finding.(Head_injury u 9severity.Severe) (2)

9finding.(Severe_injury u 9finding_site.Head) (3)

The above descriptions are not formally equivalent, nevertheless they are meant to represent
the same concept. They can be unified (i.e., made equivalent) by viewing Head_injury and
Severe_injury as variables and substituting them respectively with Injury u 9finding_site.Head
and Injury u 9severity.Severe.

Background knowledge can facilitate unification of concept descriptions. For example, as-
sume that, instead of (3), the concept description

9finding.(Severe_injury u 9finding_site.Head) u 9status.Emergency (4)

occurs in the ontology. The descriptions (2) and (4) are not unifiable. They can, however, be
unified (with the same substitution as before) if the GCI (1) is in the background ontology.

To define unification more formally, we assume that the set NC is partitioned into concept

variables (N
var

) and concept constants (N
con

). A substitution � maps every variable to a concept
description and can be extended to concept descriptions in the usual way. A concept description
is ground if it contains no variables and a substitution is ground if all concept descriptions in its
range are ground. Similarly, an ontology is ground if it contains no variables. In the following,
we assume that O is ground.

A unification problem w.r.t. O is a finite set � = {C1 ⌘?
D1, . . . , Cn ⌘?

Dn} of equations
between concept descriptions. A substitution � is a unifier of � w.r.t. O if � solves all the
equations in � w.r.t. O, i.e. if �(C1) ⌘O �(D1), . . . ,�(Cn) ⌘O �(Dn). We say that � is
unifiable w.r.t. O if it has a unifier w.r.t. O. We call � w.r.t. O an EL- or ELHR+ -unification
problem depending on whether O contains role inclusions.

Connection to E-Unification

We can equivalently express unification w.r.t. ELHR+ -ontologies as unification in the equational
theory SLmO of semilattices with monotone operators, using additional identities to express
GCIs and role inclusions [6, 15]. This unification-theoretic point of view sheds some light
on our decision to restrict unification to the case of ground ontologies. In fact, if we lifted
this restriction, then we would end up with an extension of rigid E-unification [14, 13] by a
background theory. To the best of our knowledge, such variants of rigid E-unification have not
been considered in the literature, and are probably quite hard to solve.

4

Cycle-Restricted Ontologies

Unfortunately, our unification algorithms are not complete for general ontologies. We call O
cycle-restricted if C 6vO 9w.C for every concept description C and every w 2 N+

R , where
9r1 . . . rn abbreviates 9r1. . . . 9rn. We can show that this condition needs to be checked only
for the cases where C is a concept name or >. This allows us to decide in polynomial time
whether an ELHR+ -ontology is cycle-restricted [6].

The main reason why we need cycle-restrictedness of O is that it ensures that a substitution
always induces a strict partial order on the variables: For a substitution � and X,Y 2 N

var

, we
define

X >� Y iff �(X) vO 9w.�(Y) for some w 2 N+
R . (5)

If O is cycle-restricted, this defines a strict partial order. This fact turns out to be an important
prerequisite for the proofs of completeness of our algorithms.

2 Unification Algorithms

The basis of all ELHR+ -unification algorithms are lemmata that give recursive characterizations
of the relation vO. We have developed two approaches for proving these characterizations: one
based on term rewriting [6] and another one based on a sequent calculus for subsumption [3, 5].
Previous algorithms for EL-unification w.r.t. the empty ontology were based on an even sim-
pler characterization of subsumption that only had to take into account the structure of the
compared concept descriptions [8, 9, 10]. Each of the following algorithms is based on one of
those earlier algorithms and generalizes it using one of the characterizations from [5] and [6].

Before we can describe the algorithms, we need some additional definitions. A flat atom

is either a concept name or an existential restriction 9r.C 0, where C

0 is a concept name. We
call a concept description flat if it is a conjunction of flat atoms. In the following, we restrict
both the unification problem � and the TBox T to contain only flat concept descriptions. This
restriction is without loss of generality [6].

The Brute-Force Algorithm

The main result underlying all the following ELHR+ -unification algorithms is that ELHR+ -
unification is local, i.e. every solvable unification problem has a so-called local unifier. Let � be
a flat unification problem and O be a flat, cycle-restricted ELHR+ -ontology. We will consider
the set Attr, which basically consists of all atoms occurring as subdescriptions in subsumptions
in � or axioms in O and some additional flat atoms (see [6] for details). Furthermore, we
define the set of non-variable atoms by Atnv := Attr \Nvar

. We call a function S that associates
every variable X 2 N

var

with a set SX ✓ Atnv an assignment. For such an assignment S, we
define >S as the transitive closure of {(X,Y) 2 N

var

⇥ N
var

| Y occurs in an atom of SX}. We
call the assignment S acyclic if >S is irreflexive (and thus a strict partial order). Any acyclic
assignment S induces a unique substitution �S , which can be defined by induction along >S :

• If X is a minimal element of N
var

w.r.t. >S , then we set �S(X) :=
d

D2SX
D.

• Assume that �(Y) is already defined for all Y such that X >S Y . Then we define
�S(X) :=

d
D2SX

�S(D).

5

We call a substitution � local if it is of this form, i.e., if there is an acyclic assignment S such
that � = �S .

In [3], we have shown that any unifiable EL-unification problem has a local unifier. This
also holds for ELHR+ -unification problems [5, 6]. Thus, one can test solvability of ELHR+ -
unification problem in nondeterministic polynomial time by guessing an acyclic assignment S

and then checking whether the induced substitution �S is a unifier, using the polynomial time
algorithm for subsumption in ELHR+ [7]. This is a direct extension of the guess-and-test
algorithm for EL without background ontology from [8]. The following two algorithms try to
generate acyclic assignments in a more goal-oriented way instead of blindly guessing arbitrary
acyclic assignments.

The Rule-Based Algorithm
In [4] and [5], we extended the rule-based algorithm from [10] to deal with EL- and ELHR+ -
ontologies, respectively. The main idea underlying these algorithms is to guide the construction
of an acyclic assignment by the equivalences of the unification problem �. The algorithm
works by exhaustive application of certain rules to �. These rules can mark certain parts of �
as solved, create new equivalences to be solved, and extend the current assignment, which is
initially empty. Once � is completely solved, the current assignment yields a unifier of the
original problem.

We show on a simple example how these rules work. Given the equivalence 9r.X ⌘? 9r.A,
where X 2 N

var

and A 2 N
con

, we can employ a rule to create the new equivalence X ⌘?
A

and mark the old one as solved. Another rule can subsequently solve this smaller equivalence
by adding A to SX . This yields the substitution X 7! A, which solves the original identity.
In contrast, the brute-force algorithm from above would have to guess any local assignment,
yielding e.g. the substitution X 7! A u 9r.A, only to realize later that this is not a unifier.

The length of every sequence of rule applications is bounded polynomially in the size of �.
However, at each point, the algorithm has a nondeterministic choice which rule to apply. To
restrict the amount of nondeterminism, several eager rules were introduced that are always
applied first and leave no choice in their application. All of the rules are triggered by “unsolved
parts” of the unification problem, and thus the constructed assignment contains only necessary
non-variable atoms. In [4, 5], we added several Mutation rules to the original rules from [10] to
take into account the axioms of an ELHR+ -ontology.

The Reduction to SAT
In this last approach, we reduce the unification problem to the propositional satisfiability prob-
lem [6], which has the advantage that we can employ highly optimized SAT solvers to solve
unification problems. Basically, a satisfying propositional valuation yields a local unifier.

The propositional variables are of the form [C v D] for all atoms C,D of a unification prob-
lem �. Their intended meaning is as follows: if [C v D] is true, then the local substitution �

induced by the valuation satisfies �(C) v �(D). Using these propositional variables, a set of
propositional clauses is constructed that (i) encodes �, (ii) expresses some relevant properties
of subsumption in ELHR+ , and (iii) ensures that the generated assignment is acyclic. A satis-
fying propositional valuation of these clauses yields an acyclic assignment S, and thus a local
substitution, in the following way: SX contains all non-variable atoms D for which [X v D]
is true. To account for ELHR+ -ontologies, the original reduction from [9] was modified in [6]
using the mentioned characterization of subsumption. More precisely, the clauses encoding the
properties of subsumption were extended to allow to take GCIs and role inclusions into account.

6

Consider O = ; and the example 9r.X ⌘? 9r.A from before. This equivalence is encoded
in the clauses ! [9r.X v 9r.A] and ! [9r.A v 9r.X]. The clause [9r.X v 9r.A] ! [X v A]
expresses that the subsumption 9r.X v 9r.A can only be solved by decomposition, i.e. strip-
ping away the common top-level existential restriction. There are several clauses that prevent
[X v 9r.A] and [X v 9r.X] from being true. Thus, this approach also yields only one unifier,
namely X 7! A.

3 Minimal Unifiers

The brute-force algorithm and the SAT reduction yield all local unifiers in the sense that the
successful runs of these nondeterministic procedures generate exactly the acyclic assignments
that induce unifiers of the unification problem. In contrast, the rule-based algorithm only
generates a subset of the local unifiers. However, it is still complete since it generates all
minimal unifiers. To be more precise, we call a unifier minimal if it is minimal w.r.t. the
order ⌫, where � ⌫ ✓ iff �(X) vO ✓(X) holds for all X 2 N

var

. In fact, locality of unification
w.r.t. O = ; was first shown in [8] by showing that every solvable unification problem has a
minimal unifier and that every minimal unifier is local.

Generating exactly the minimal unifiers would be advantageous since there are considerably
fewer minimal unifiers than local ones, and they are usually of smaller size. However, the rule-
based algorithm also generates unifiers that are not minimal. If we assume a slight generalization
of ⌫ to ⌫X , where ⌫X compares the unifiers only w.r.t. a subset X ✓ N

var

, we are able to show [2]
that there cannot be an NP-procedure that generates exactly the ⌫X -minimal unifiers in the
sense that the successful runs of the procedure on a unification problem � generate exactly the
acyclic assignments that yield ⌫X -minimal unifiers of �. It is still open whether this result also
holds for the case of ⌫ = ⌫N

var

.

4 Future Work

The main objective for future work is to find a unification algorithm w.r.t. arbitrary, not nec-
essarily cycle-restricted, ELHR+ -ontologies. We have implemented the rule-based algorithm
and the SAT reduction in our system UEL [1] for the case of acyclic terminologies. We have
also modified the SAT reduction into a MaxSAT problem that yields only the minimal uni-
fiers of a unification problem [1]. We plan on further optimizing our implementations and
extending them to deal with cycle-restricted ontologies. The main difficulty is that the pres-
ence of ELHR+ -ontologies other than acyclic terminologies increases the nondeterminism of our
decision procedures considerably.

References

[1] Franz Baader, Stefan Borgwardt, Julian Alfredo Mendez, and Barbara Morawska. UEL: Unifica-
tion solver for EL. In Yevgeny Kazakov, Domenico Lembo, and Frank Wolter, editors, Proc. of the

25th Int. Workshop on Description Logics (DL’12), volume 846 of CEUR Workshop Proceedings,
pages 26–36, 2012.

[2] Franz Baader, Stefan Borgwardt, and Barbara Morawska. Computing minimal EL-unifiers is hard.
In Thomas Bolander, Torben Brauner, Silvio Ghilardi, and Lawrence Moss, editors, Advances in

Modal Logic 9 (AiML’12). College Publications, 2012.

7

[3] Franz Baader, Stefan Borgwardt, and Barbara Morawska. Extending unification in EL towards
general TBoxes. In Gerhard Brewka, Thomas Eiter, and Sheila A. McIlraith, editors, Proc. of

the 13th Int. Conf. on Principles of Knowledge Representation and Reasoning (KR’12), pages
568–572. AAAI Press, 2012. Short paper.

[4] Franz Baader, Stefan Borgwardt, and Barbara Morawska. A goal-oriented algorithm for unification
in EL w.r.t. cycle-restricted TBoxes. In Yevgeny Kazakov, Domenico Lembo, and Frank Wolter,
editors, Proc. of the 25th Int. Workshop on Description Logics (DL’12), volume 846 of CEUR

Workshop Proceedings, pages 37–47, 2012.
[5] Franz Baader, Stefan Borgwardt, and Barbara Morawska. A goal-oriented algorithm for unification

in ELH+
R w.r.t. cycle-restricted ontologies. In Michael Thielscher and Dongmo Zhang, editors, Proc.

of the 25th Australasian Joint Conf. on Artificial Intelligence (AI’12), volume 7691 of Lecture Notes

in Artificial Intelligence, pages 493–504. Springer-Verlag, 2012.
[6] Franz Baader, Stefan Borgwardt, and Barbara Morawska. SAT encoding of unification in ELHR+

w.r.t. cycle-restricted ontologies. In Bernhard Gramlich, Dale Miller, and Uli Sattler, editors, Proc.

of the 6th Int. Joint Conf. on Automated Reasoning (IJCAR’12), volume 7364 of Lecture Notes in

Artificial Intelligence, pages 30–44. Springer-Verlag, 2012.
[7] Franz Baader, Sebastian Brandt, and Carsten Lutz. Pushing the EL envelope. In Leslie Pack Kael-

bling and Alessandro Saffiotti, editors, Proc. of the 19th Int. Joint Conf. on Artificial Intelligence

(IJCAI’05), pages 364–369. Professional Book Center, 2005.
[8] Franz Baader and Barbara Morawska. Unification in the description logic EL. In Ralf Treinen,

editor, Proc. of the 20th Int. Conf. on Rewriting Techniques and Applications (RTA’09), volume
5595 of Lecture Notes in Computer Science, pages 350–364. Springer-Verlag, 2009.

[9] Franz Baader and Barbara Morawska. SAT encoding of unification in EL. In Christian G. Fermüller
and Andrei Voronkov, editors, Proc. of the 17th Int. Conf. on Logic for Programming, Artificial

Intelligence, and Reasoning (LPAR’10), volume 6397 of Lecture Notes in Computer Science, pages
97–111. Springer-Verlag, 2010.

[10] Franz Baader and Barbara Morawska. Unification in the description logic EL. Logical Methods in

Computer Science, 6(3), 2010.
[11] Franz Baader and Paliath Narendran. Unification of concept terms in description logics. Journal

of Symbolic Computation, 31(3):277–305, 2001.
[12] Sebastian Brandt. Polynomial time reasoning in a description logic with existential restrictions,

GCI axioms, and - what else? In Ramon López de Mántaras and Lorenza Saitta, editors, Proc.

of the 16th Eur. Conf. on Artificial Intelligence (ECAI’04), pages 298–302. IOS Press, 2004.
[13] Anatoli Degtyarev and Andrei Voronkov. The undecidability of simultaneous rigid E-unification.

Theoretical Computer Science, 166(1–2):291–300, 1996.
[14] Jean Gallier, Paliath Narendran, David Plaisted, and Wayne Snyder. Rigid E-unification: NP-

completeness and applications to equational matings. Information and Computation, 87(1–2):129–
195, 1990.

[15] Viorica Sofronie-Stokkermansmans. Locality and subsumption testing in EL and some of its
extensions. In Carlos Areces and Robert Goldblatt, editors, Advances in Modal Logic 7 (AiML’08),
pages 315–339. College Publications, 2008.

8

Some Notes on Basic Syntactic Mutation

Christopher Bouchard?, Kimberly A. Gero, and Paliath Narendran?

University at Albany–SUNY (USA)
{cbou,dran,kgero001}@cs.albany.edu

1 Introduction

Unification modulo an equational theory E (equational unification or E-unification)
is an undecidable problem in general. Even in cases where it is decidable, it is
often of high complexity. In their seminal paper “Basic Syntactic Mutation”
Christopher Lynch and Barbara Morawska present syntactic criteria on equa-
tional axioms E that guarantee a polynomial time algorithm for the correspond-
ing E-unification problem. As far as we know these are the only purely syntactic
criteria that ensure a polynomial-time algorithm for unifiability. Our goal ini-
tially was to extend the Lynch-Morawska result for convergent term rewriting
systems by relaxing their constraints, while still maintaining the polynomial time
algorithm guarantee. However, we observed that their constraints were tight in
the sense that relaxing any one of them would give rise to unification problems
that are not in P (unless P = NP). We provide proofs that removing any of their
constraints will lead to unification problems that are not in P.

We also investigate one of the computational issues raised by the Lynch-
Morawska paper, namely, checking whether a convergent term rewriting system
is subterm-collapsing — a term rewriting system is subterm-collapsing if and only
if there is a term that is congruent to a proper subterm of itself. We show the
undecidability of subterm collapse even for convergent term rewriting systems
that satisfy the Lynch-Morawska conditions [7]. (For general convergent systems,
this result was shown by Bürkert, Herold and Schmidt-Schauß [5].)

This is a preliminary report of our ongoing research. More details are given
in [4].

2 Notation and Preliminaries

We assume the reader is familiar with the usual notions and concepts in term
rewriting systems [2] and equational unification [3]. We consider rewrite systems
over ranked signatures, usually denoted ⌃, and a possibly infinite set of variables,
usually denoted X . The set of all terms over ⌃ and X is denoted as T (⌃,X).
An equation (⌃-identity) is an ordered pair of terms (s, t), usually written as
s ⇡ t. Here s is the left-hand side and t is the right-hand side of the equation [2].
A rewrite rule is an equation s ⇡ t where V ar(t) ✓ V ar(s), usually written
as s! t. A term rewriting system is a set of rewrite rules.

? Research supported in part by NSF grant CNS-0905286.

9

A set of equations E is subterm-collapsing if and only if there are terms t and
u such that t is a proper subterm of u and E ` t ⇡ u (or t =E u) [5]1. A term
rewriting system is convergent if and only if it is confluent and terminating [2].

Given a set of equations E, the set of ground instances of E is denoted by
Gr(E). An equation e is redundant in E if and only if every ground instance
e0 of e is a consequence of equations in Gr(E) which are smaller than e0 modulo
the ordering we use to show termination [7].

Following Hermann [6] the forward-closure of a convergent term rewriting
system R is defined in terms of the following operation on rules in R: let ⇢1 :
l1 ! r1 and ⇢2 : l2 ! r2 be two rules in R and let p 2 FPos(r1). Then

⇢1 p ⇢2 = �(l1 ! r1[r2]p)

where � = mgu(r1|p =? l2). Given rewrite systemsR1 andR2 such thatR2 ✓ R1,
we define R1 R2 as the rules in

{(l1 ! r1) p (l2 ! r2) | (l1 ! r1) 2 R1, (l2 ! r2) 2 R2 and p 2 FPos(r1)}

which are not redundant in R1.
We now define FC0(R) = R and FCk+1(R) = FCk(R) [(FCk(R) R)

for all k � 0. Finally,

FC(R) =
1[

i=1

FCi(R).

A set of rewrite rules R is forward-closed if and only if FC(R) = R.
Lynch and Morawska also define a right-hand-side critical pair . Since our fo-

cus is only on convergent term rewriting systems, this definition can be modified
as

s! t u! v
s� ⇡ u�

where � = mgu(v, t) and s� 6= u�.
For an equational theory E, RHS(E) = { e | e is the conclusion of a Right-

Hand-Side Critical Pair inference of two members of E } [E [7].
A set of equations E is quasi-deterministic if and only if

1. No equation in E has a variable as its left-hand side or right-hand side,
2. No equation in E has the same root symbol on both the left-hand side and

the right-hand side, and
3. No two equations of E have the same root symbols at their sides.

E is deterministic if and only if it is quasi-deterministic and non-subterm-
collapsing.

1 Non-subterm-collapsing theories are called simple theories in [5]

10

3 Lynch-Morawska Conditions

Given a confluent and terminating term rewriting system R, there are three
conditions that must hold to maintain a polynomial time algorithm guarantee:

(i) R is non-subterm-collapsing,
(ii) R is forward-closed, and
(iii) RHS(R) is quasi-deterministic.

In this section we will show that if any one of these conditions is relaxed
there is no longer a polynomial time guarantee. Therefore the conditions given
in the Lynch-Morawska paper are tight.

3.1 The case where R is subterm-collapsing

Consider the following single-rule ground term rewriting system R1, where f is
a binary function symbol and c, 0, 1 are constants.

f(0, f(0, f(1, c)))! c

R1 is forward-closed andRHS(R1) is quasi-deterministic. However, it is subterm-
collapsing. The unification problem can be shown to be NP-hard by a reduction
from monotone 1-in-3-SAT [2], which is known to be NP-complete.

For each clause Ci = pi _ qi _ ri we form the following equation, where Zi is
a variable that varies with each clause.

f(Xpi , f(Xqi , f(Xri , Zi))) =
?
R1

Zi

The unification problem S is the set of all these equations. Every unifier of
f(Xpi , f(Xqi , f(Xri , Zi))) =?

R1
Zi replaces exactly one of Xpi , Xqi , Xri by 1 and

the others by 0. In fact,

�1 = {Xpi 7! 0, Xqi 7! 0, Xri 7! 1, Zi 7! c}
�2 = {Xpi 7! 1, Xqi 7! 0, Xri 7! 0, Zi 7! f(1, c)}
�3 = {Xpi 7! 0, Xqi 7! 1, Xri 7! 0, Zi 7! f(0, f(1, c))}

are the only normalized unifiers for the above equation. Clearly, then, S is unifi-
able i↵ C has a solution.

This (the ground term rewriting system R1) solves an open problem posed
by Lynch and Morawska [7] which asked if is there a system which is quasi-
deterministic but subterm-collapsing, for which there is no polynomial time al-
gorithm.

3.2 R is not forward-closed

R2 = {B(x, y) ⇤B(u, v) ! B(x ⇤ u, y ⇤ v) }

is deterministic (i.e quasi-deterministic and non-subterm-collapsing), but not
forward-closed. There are no right-hand-side critical pairs, so RHS(R2) = R2.
The unification problem is undecidable [1]. (Note that every forward-closed con-
vergent system has a unification problem that is decidable in NP [7].)

11

3.3 RHS(R) is not deterministic

The following system R3 is non-subterm-collapsing and forward-closed. However
RHS(R3) is not deterministic.

f(0, 0, 1)! c1 g(0, 0, 1)! c1

f(0, 1, 0)! c2 g(0, 1, 0)! c2

f(1, 0, 0)! c3 g(1, 0, 0)! c3

where c1, c2, c3, 0 and 1 are constants. Note thatR3 is deterministic, butRHS(R3)
is not. Unifiability modulo R3 can also be shown to be NP-hard by a reduction
from monotone 1-in-3-SAT. We only present the key idea here.

For each proposional variable p we form a respective term variable Vp. For
each clause Ci we form the following equation EQi.

f(Vpi , Vqi , Vri) =?
R2

g(Vpi , Vqi , Vri)

It is not hard to see that the only unifiers of EQi are:

�1 = {Vpi 7! 0, Vqi 7! 0, Vri 7! 1}
�2 = {Vpi 7! 0, Vqi 7! 1, Vri 7! 0}
�3 = {Vpi 7! 1, Vqi 7! 0, Vri 7! 0}

4 Undecidability of Subterm-Collapse

For general convergent systems, this result was shown by Bürkert, Herold and
Schmidt-Schauß [5]. We show that the property of subterm-collapsing is un-
decidable even when the convergent system R satisfies the other conditions of
determinism, namely forward-closure and quasi-determinism of RHS(R).

The proof is by reduction from the halting problem for reversible determin-
istic 2-counter Minsky machines, which is undecidable since reversible deter-
ministic 2-counter Minsky machines are Turing-universal [8]. We use the same
notation as Morita in [8].

Given such a machine M and configurations (q0, k, p) and (qL, k0, p0), we con-
struct a term rewriting systemRM . This system is forward-closed, andRHS(RM)
is quasi-deterministic. We then show that RM is subterm-collapsing if and only
if the machine M , starting in configuration (q0, k, p), will halt with (qL, k0, p0) as
its final configuration.

Our system is over the signature ⌃ =
SL

i=0{ qi, fi, f 0
i }[{ 0, e, e0, c, s, f, g, g0 }

where 0, e, e0, and q0, . . . , qL are constants, c has arity 4, every other symbol
has arity 1. We encode a natural number n as a term sn(0). A state qi will
be encoded by a constant qi. We can then encode a configuration (qi, k, p) as a
term c(qi, sk(0), sp(0), sn(0)), where n is the number of steps the machine has
taken. We use the f and g symbols, with various subscripts and primes, to ensure
termination and foward-closure of the resulting rewrite system.

12

To start, initialize RM as

RM { f(c(e, sk(0), sp(0), 0))! c(q0, s
k(0), sp(0), 0),

fL(c(qL, s
k0
(0), sp

0
(0), z))! g(c(e0, 0, 0, z)),

g0(g(c(e0, 0, 0, s(z))))! c(e0, 0, 0, z),

g0(g(c(e0, 0, 0, 0)))! e }

The first rule encodes initializing the machine. The second terminates the
machine i↵ the configuration matches the given final configuration. The third
checks that the step-counter encodes a valid natural number. The fourth rewrites
a completely empty configuration to e, which could cause a subterm-collapse.

Next we encode the transition rules. For each quadruple in �, extend RM

using one of the following transformations:

(a) [qi, 1, P, qj]: RM RM [{ fi(c(qi, s(x), y, z))! c(qj , s(x), y, s(z)) }
(b) [qi, 1, Z, qj]: RM RM [{ f 0

i(c(qi, 0, y, z))! c(qj , 0, y, s(z)) }
(c) [qi, 1,+, qj]: RM RM [{ fi(c(qi, x, y, z))! c(qj , s(x), y, s(z)) }
(d) [qi, 1, 0, qj]: RM RM [{ fi(c(qi, x, y, z))! c(qj , x, y, s(z)) }
(e) [qi, 1,�, qj]: RM RM [{ fi(c(qi, s(x), y, z))! c(qj , x, y, s(z)) }

For quadruples with 2 as their second argument, swap the second and third
arguments of the c-terms.

Lemma 1 Given a reversible deterministic 2-counter Minsky machine M , the
system RM has no RHS overlaps.

Lemma 2 The system RM is forward-closed and quasi-deterministic.

Lemma 3 Given a reversible deterministic 2-counter Minsky machine M and
configurations (q0, k, p) and (qL, k0, p0), and rewrite system RM constructed as
above, RM is subterm-collapsing if and only if the machine M , starting in con-
figuration (q0, k, p), will halt with (qL, k0, p0) as its final configuration.

Theorem 4. It is undecidable, given a rewrite system R which is forward-closed
and for which RHS(R) is quasi-deterministic, whether RHS(R) is subterm-
collapsing.

References

1. S. Anantharaman, S. Erbatur, C. Lynch, P. Narendran, M. Rusinowitch. “Uni-
fication modulo Synchronous Distributivity”. Technical Report SUNYA-CS-12-
01, Dept. of Computer Science, University at Albany—SUNY, 2012. Available at
www.cs.albany.edu/~ncstrl/treports/Data/README.html (An abridged version to
be presented at IJCAR 2012.)

2. F. Baader, T. Nipkow. Term Rewriting and All That. Cambridge Univ Press, 1999.
3. F. Baader, W. Snyder. “Unification Theory”. Handbook of Automated Reasoning ,
pp. 440–526, Elsevier Science Publishers B.V., 2001.

13

4. C. Bouchard, K. Gero, P. Narendran. “Notes on Basic Syntactic Mutation”. Tech-
nical Report SUNYA-CS-12-03, Dept. of Computer Science, University at Albany—
SUNY. http://www.cs.albany.edu/ ncstrl/treports/Data/README.html.

5. H-J. Bürckert, A. Herold, M. Schmidt-Schauß. On Equational Theories, Unification,
and (Un)Decidability. Journal of Symbolic Computation 8(1/2): 3-49 (1989).

6. M. Hermann. Chain properties of rule closures. Formal Aspects of Computing 2
207–225 (1990).

7. C. Lynch, B. Morawska. Basic Syntactic Mutation. In: Proc. of CADE 2002 (A.
Voronkov, ed.), LNCS 2392, pages 471–485.

8. K. Morita. Universality of a reversible two-counter machine. Theoretical Computer
Science 168 303–320 (1996).

14

Admissibility and unification in

subvarieties of pseudocomplemented

lattices

Leonardo Manuel Cabrer

Institute of Mathematics
University of Oxford

Unification type and admissible rules have been studied for intermediate
logics and their fragments by various authors [12], [9], [13], [15], [5] , [3] , [6],
[2], [7], to mention some of them.

In this paper we initiate the study of admissible quasi-equations, ad-
missible clauses and unification types of equational theories extending the
equational theory of the {¬,?}-fragment of propositional intuitionistic logic.
This is the equational theory of the the variety of distributive pseudocom-
plemented lattices (p-lattices, for short). We calculate the unification type
of all the subvarieties of p-lattice and we determine that only 3 of them are
structurally complete. We also present basis for admissible quasi-equations
and admissible clauses for some of the non structurally complete subvarieties
of p-lattice. Finally, we determine the unification type of a particular unifi-
cation problem in each subvariety of pseudocomplemented lattices, obtaining
complete classifications for some particular subvarieties.

The main tools used in this paper are: First, the topological duality
for bounded distributive lattices presented in [10], and its restriction to p-
lattices developed in [11]; second, the characterization of subvarieties of p-
lattices given in [8] and the description of finite projective p-lattices in these
subvarieties given in [14]; and finally the algebraic approach to E-unification
developed in [4].

An algebra A = (A,^,_,¬, 0, 1) is said to be a distributive pseudocom-
plemented lattice if (A,^,_, 0, 1) is a bounded distributive lattice and ¬(a)
is the maximal element of the set {b 2 A | b ^ a = 0} for each a 2 A. In
what follows PL will denote the variety of p-lattices.

15

Let Bn = (Bn,^,_,⇤ ,?,>) denote the finite boolean algebra with n

atoms and let B0
n be the pseudocomplemented lattice obtained by adding a

fresh top 1 to Bn and defining the negation in B

0
n as follows: ¬(?) = 1,

¬(1) = ? and ¬(a) = a

⇤ otherwise. We denote Bn = ISP(B0
n). In [8], Lee

proved that for each n = {0, 1, . . .}, Bn is a variety and that every non trivial
proper subvariety of PL coincides with some Bn. Observe that B0 and B1

are the varieties of Boolean algebras and Stone algebras respectively.

Unification:

In [4], Ghilardi proved that the variety PL has unification type 0. In
this work we extend that result proving that every proper subvariety of PL
di↵erent from the class of Boolean algebras has unification type 0. Precisely:

Theorem 1 Let V be a non trivial subvariety of PL, then the following hold:

Type(V) =
⇢

1 if V = B0,
0 otherwise.

We also prove that there are no infinitary unification problems in any of
the subvarieties of PL, and we present an algorithm to determine the type
of a unification problem in the varieties of Stone algebras and B2.

Admissibility:

In the case of equational theories, single-conclusion rules correspond to quasi-
identities and multiple-conclusion rules correspond to clauses (implications
between conjunctions of identities and disjunctions of identities). Admissi-
bility then amounts to the validity of quasi-identities or clauses in the free
algebra on countably infinitely many generators of the quasi-variety deter-
mined by the equational theory.

A quasi-variety V is called structurally complete (universally complete) if
each admissible quasi-identity (clause) of V is satisfied by all members of V .

It is well-known that the variety of Boolean algebras is structurally com-
plete, and it can be easily seen that it is universally complete too. In [1], we
have proven that the variety B1 of Stone algebras also is universally complete.
We extend these results as follow:

Theorem 2 Let V be a non trivial subvariety of PL, then the following hold:

(i) V is structurally complete i↵ V 2 {B0,B1,B2}.

(ii) V is universally complete i↵ V 2 {B0,B1}.

16

The theorem above proves that all the subvarieties of p-lattices contain-
ing B3 (B2) have admissible quasi-equations (clauses) that are not valid. We
started to determine axiomatizations for admissible quasi-equations and ad-
missible clauses for subvarieties above B2. We summarize the results obtained
so far in the following:

Theorem 3 The admissible clauses of B2 are axiomatized by the following
clause:

x ^ y ⇡ ?, ¬¬(x _ y) ⇡ x _ y) x ⇡ ?, y ⇡ ?.

The following quasi-equation axiomatizes the admissible quasi-equations
of B3

x ^ y ⇡ ?, ¬¬(x _ y) ^ z x _ y) z ¬x _ ¬y.

References

[1] L.M. Cabrer and G. Metcalfe, Admissibility via natural dualities. Sub-
mitted (Research Report 2012-05, Mathematics Institute - University of
Bern).

[2] P. Cintula and G. Metcalfe, Admissible rules in the implication-negation
fragment of intuitionistic logic, Annals of Pure and Applied Logic 162(2)
(2010), 162171.

[3] W. Dzik, Splittings of lattices of theories and unification types, Pro-
ceedings of the Workshop on General Algebra 70, Verlag Johannes Heyn
(2006), 71-81.

[4] S. Ghilardi, Unification through projectivity, Journal of Logic and Com-
putation 7(6) (1997), 733-752.

[5] S. Ghilardi, Unification in intuitionistic logic, Journal of Symbolic Logic
64(2) (1999), 859-880.

[6] R. Iemho↵, Intermediate logics and Visser’s rules, Notre Dame Journal
of Formal Logic 46(1) (2005), 65-81.

[7] R. Iemho↵ and Paul Rozière, Unification in fragments of intermediate
logics, Preprint.

[8] K.B. Lee, Equational classes of distributive pseudocomplemented lattices,
Canadian Jounal of Mathematics 22 (1970), 881-891.

17

[9] P. Minari and A. Wroński, The property (HD) in intermediate logics: a
partial solution of a problem of H. Ono, Reports on Mathematical Logic
22 (1988), 21-25.

[10] H.A. Priestley, Representation of distributive lattices by means of or-
dered Stone spaces, Bulletin of the London Mathematical Society 2 (1970),
186-190.

[11] H.A. Priestley, The construction of spaces dual to pseudocomplemented
distributive lattices, Quarterly Journal of Mathematics. Oxford Ser.
26(2) (1975), 215-228.

[12] T. Prucnal, On the structural completeness of some pure implicational
propositional calculi, Studia Logica 32(1) (1973), 45-50.

[13] P. Rozière, Regles admissibles en calcul propositionnel intuitionniste,
PhD thesis, Universitè Paris VII (1992).

[14] A. Urquhart, Projective distributive p-algebras, Bulletin of the Aus-
tralian Mathematical Society 24 (1981), 269-275.

[15] A. Wroński, Transparent Unification Problem, Reports on Mathematical
Logic 29 (1995), 105-107.

18

On Matching Concurrent Traces?

Iliano Cervesato1, Frank Pfenning2, Jorge Luis Sacchini1,
Carsten Schürmann3, and Robert J. Simmons2

1 Carnegie Mellon University – Doha, Qatar
iliano@cmu.edu, sacchini@qatar.cmu.edu

2 Carnegie Mellon University – Pittsburgh, PA, USA
fp@cs.cmu.edu, rjsimmon@cs.cmu.edu

3 IT University of Copenhagen – Copenhagen, Denmark
carsten@itu.dk

Abstract. Concurrent traces are sequences of computational steps where
independent steps can be permuted and executed in any order. We study
the problem of matching on concurrent traces. We outline a sound and
complete algorithm for matching traces with one variable standing for
an unknown subtrace.

1 State-Transition Concurrency

Computation in a concurrent system results from the interactions of computing
units such as threads or agents. One popular approach to modeling concurrent
computation views each such agent as being able to perform local transforma-
tions on a global state, possibly in parallel. This is the approach embraced by
Petri nets [5]. This is also the approach underlying propositional multiset rewrit-
ing, which we will now describe in further detail.

A multiset rewriting system is determined by a set of rules of the form ã! b̃,
where ã and b̃ are multisets over some support set S. We write “·” for the empty
multiset and “ã, b̃” for the union of multisets ã and b̃. Multiset union is associative
and commutative, and has the empty multiset as its unit. Therefore, the set of
multisets over S is a commutative monoid with respect to “,” and “·”. We give
each rule ã! b̃ with a unique name, r, writing the association as r : ã! b̃. We
write R for a set of labeled rules.

A state s is a set of pairs x : a where a 2 S is an element of the support set
S and x is a unique name. Abusing notation, we occasionally write such a state
as x̃ : ã, where ã is the multiset of occurrences of elements of S in s and x̃ the
corresponding names. We also use “,” for set union in the context of states.

A rule r : ã ! b̃ in a multiset rewriting system R is enabled in a state
s if s = s

0
, (x̃ : ã), i.e., if s contains its antecedent. In this circumstance, the

? Partially supported by the Qatar National Research Fund under grant NPRP 09-
1107-1-168, the Fundação para a Ciência e a Tecnologia (Portuguese Foundation
for Science and Technology) through the Carnegie Mellon Portugal Program under
Grant NGN-44, and the Danish Council for Strategic Research, Programme Com-
mission on Strategic Growth Technologies under grant 10-092309.

19

application of r to s results in the state s

00 = s

0
, (ỹ : b̃) where ỹ are fresh names:

the portion of s matching ã has been replaced with new state elements for b̃. The
triple r(x̃; ỹ), generically denoted t, is a rule instance, or transition. We call x̃ : ã
the pre-condition of t and denote it as •t and ỹ : b̃ its post-condition, denoted
t•. We formalize the state transformation embodied by the application of a rule

by means of the multiset rewriting judgment R ` s

t�! s

00. Then, application is
defined simply as

R, (r : ã! b̃) ` s

0
, x̃ : ã| {z }
s

r(x̃;ỹ)�! s

0
, ỹ : b̃| {z }
s

00

or more succinctly as R ` s

0
, •t t�! s

0
, t• for t an instance of a rule r 2 R.

Multistep computation is obtained by iterating application. We write R `
s

t
=) s

0 for the reflexive and transitive closure of our base judgment, where t
records the rules that have been applied to go from s to s

0. It is defined by the
following grammar:

t ::= · | r(x̃; ỹ) | t1; t2

We call t a trace. Here, “·” represents the empty trace and “t1; t2” is the con-
catenation of t1 and t2.

A concurrent trace t can be interpreted as a bipartite directed acyclic graph
(BDAG) G = (N1, N2, E) where N1 is the set of transitions t in t and N2 is
the set of state elements x : a mentioned in t. There is an edge from x : a to
t = r(x̃; ỹ) if and only if x occurs in x̃, and there is an edge from t to y : b i↵ y

occurs in ỹ. These BDAGs are exactly what we get by graphically unfolding the
computation of a place/transition Petri net.

2 Concurrent Traces

A trace is a precise record of all the steps that occurred in a concurrent com-
putation. Indeed, given the initial state, it allows us to replay the computation
exactly and determine the final state. If the latter is known, it can be replayed
backward and reconstruct the initial state.

Traces have an interesting algebraic structure that is key to reasoning about
concurrent computations. To expose it, it will be useful to define the natural
extension of pre- and post-conditions:

8
<

:

•(·) = ·
•r(x̃; ỹ) = x̃ : ã
•(t1; t2) = •t1 [(•t2 \ t1•)

8
<

:

(·)• = ·
r(x̃; ỹ)• = ỹ : b̃
(t1; t2)• = (t1• \ •t2) [t2•

for r : ã! b̃. Two traces t1 and t2 are independent, written t1 k t2, if •t1\t2• =
t1• \ •t2 = ;. A name x is internal to a trace t if it does not occur in neither
•t nor t•.

20

Two traces t and t0 are equal, written t = t0, if there are renamings ⇢ and ⇢

0

of their internal variables such that R ` s

⇢t
=) s

0 i↵ R ` s

⇢

0t0
=) s

0 for any s and
s

0. It is easy to prove that if t = t0, then •t = •t0 and t• = t0•.
Trace concatenation is associative with respect to trace equality, and the

empty trace (“·”) is its left and right unit. Moreover, independent traces can be
permuted, i.e., t1; t2 = t2; t1 whenever t1 k t2.

Altogether, traces obey the following equational theory:

Associativity (t1; t2); t3 = t1; (t2; t3)
Left identity ·; t = t
Right identity t; · = t
Independent commutativity t1; t2 = t2; t1 if t1 k t2

Two traces are equal whenever the corresponding BDAGs are isomorphic up to
the name of internal state elements. Although the complexity of trace equality
has not been determined as far as we know, the isomorphism problem for both
bipartite graphs and directed acyclic graphs is known to be GI-complete, where
GI is a complexity class between P and NP [6].

The equational theory we just gave is closely related to trace monoids, the
laws that govern Mazurkiewicz trace theory [4]. Mazurkiewicz traces may contain
several occurrences of what corresponds to our transitions, while our traces are
limited to a single occurrence of each transition.

It should be observed that, although our definition of trace was based on finite
concurrent computations, the same equational theory applies to traces of infinite
computations, as produced by operating systems, streaming computations, and
reactive systems.

3 Reasoning about Concurrent Traces

Reasoning about concurrent systems requires reasoning about concurrent com-
putations, whether implicitly or explicitly. Typical reasoning tasks include 1) the
analysis of a given computation, whether to gather information about it as done
in profilers or to react to unexpected states as done by monitors; 2) reasoning
about all possible computations from a given state, for example to verify cor-
rectness as in model checking, to ensure termination, and to detect deadlocks or
starvation; and 3) verifying the soundness and often completeness of a program
transformation, through some sort of (bi)simulation.

While many of these reasoning tasks can be performed by just looking at
the successive states of the system, an analysis that explicitly works on the
traces of the concurrent computation can be much more precise and economical,
especially when the state is large or geographically distributed. To carry out
such forms of trace-based reasoning, we must be able to work with traces that
are not completely specified. This can be captured by extending our definition
of trace with trace variables :

t ::= X(x̃; ỹ) | · | r(x̃; ỹ) | t1; t2

21

Equality and other notions introduced for traces carry over to traces containing
variables. They also allow asking whether there are instances of said variables
that make two traces equal, a typical unification problem. With the requirement
that •t = •t0 and t• = t0•, we write

t
?
= t0

for such a problem. A solution is a substitution ✓ = (X1 t1, . . . , Xn

 tn)
such that for each i, •X

i

= •t
i

and X

i

• = t

i

• and moreover [✓]t = [✓]t0 where
substitution application is defined in the standard way.

Because the equational theory of traces is only partially commutative, stan-
dard results about ACU or string unification do not apply directly [1]. We have
no proof that it is decidable. We know however that there can be multiple so-
lutions to a trace unification problem since multiset unification can be encoded
as a form of trace unification where all transitions are independent from each
other.

4 Matching

While trace unification is necessary for reasoning tasks (2) and (3) above, match-

ing is su�cient for task (1). In a matching problem t
?
= t0, the trace t0 does not

contain trace variables. Matching is decidable: freeze the order of the transitions
in t and consider all dependency-preserving permutations of t0 in turn; each
permutation gives rise to a string matching problem, which is solvable in linear
time. Of course such a brute-force approach has exponential complexity.

In this section, we present an algorithm for the restriction of the matching
problem with a single trace variable. This algorithm behaves better than the
brute force approach just mentioned. These matching problems have therefore
the form

t1;X(x̃; ỹ); t01
?
= t2

where t1, t01 and t2 do not contain trace variables.
Our algorithm will work as follows: strip common transitions from the be-

ginning and the end of the two sides until only the trace variable is left on the
left-hand side. While intuitively simple, care must be taken because indepen-
dent transitions can be permuted and especially because the two sides may not
use the same internal names. This means that as we strip initial and/or final
transitions, we will need to apply a renaming to the rest of the trace.

Given sequences of names x̃ and x̃

0 of the same length, we write ⇢ = [x̃0
/x̃]

for the renaming that replaces each name x

i

in x̃ with the corresponding name
x

0
i

in x̃

0. A renaming ⇢ = [x̃0
/x̃] is legal for a trace t if it is the identity for •t

and t•. Applying a renaming ⇢ to a trace t, written ⇢t, preserves •t and t• if ⇢
is legal for t.

Our matching algorithm is given next for a generic problem t1
?
= t2. We fix

the order of t1 but allow permutations in t2. We propagate the internal names in
t2 to t1. Legality constraints ensure the invariant that •t1 = •t2 and t1• = t2•.

22

1. p(x̃; ỹ); t1
?
= p(x̃; ỹ0); t2:

If ỹ0/ỹ is legal for p(x̃; ỹ); t1, then solve [ỹ0/ỹ]t1
?
= t2, otherwise fail.

2. t1; p(x̃; ỹ)
?
= t2; p(x̃0; ỹ):

If x̃0
/x̃ is legal for t1; p(x̃; ỹ), then solve [x̃0

/x̃]t1
?
= t2, otherwise fail.

3. X(x̃; ỹ)
?
= t2: Simply return the solution X t2.

This algorithm is sound and complete in the sense that computed solutions
do yield equal traces, and that it computes all solutions. Proofs, although using
a di↵erent presentation of traces, will appear in a forthcoming technical report.

Theorem 1 (Soundness). Given a matching problem t1;X(x̃; ỹ); t01
?
= t2, if

the matching algorithm reports a solution X t, then there is a legal renaming

⇢ such that ⇢t1; t; ⇢t01 = t2.

Theorem 2 (Completeness). Given a matching problem t1;X(x̃; ỹ); t01
?
= t2,

if there is a trace t such that t1; t; t01 = t2, then the matching algorithm will

report the solution X ⇢t for some renaming ⇢.

Because this algorithm embeds two trace equality subproblems, it is at least
GI-complete. It may report multiple solutions.

5 Generalizations

In this paper, we have investigated the matching problem for the notion of
concurrent traces emerging from multiset rewriting systems (or equivalently
place/transition Petri nets [3]). In recent years, more expressive languages for
describing concurrent computations have been successfully proposed. State ele-
ments can carry information to allow agents to store and exchange data. Some
may be read repeatedly rather than consumed on access. In process algebras,
synchronization changes the involved processes while our rules are immutable.
Each of these extensions, and others, yields much more sophisticated notions of
trace. The logical framework CLF [2] provides mechanisms rooted in linear type
theory to support these forms of concurrency, and others. Being a type theory,
its term language contains constructs that describe the associated traces.

We are extending the matching algorithm outlined here to a large sublan-
guage of CLF. Supporting reusable state elements, in particular, adds substantial
complications. We have also started examining the general matching problem as
well as unification for concurrent traces.

References

1. F. Baader and W. Snyder. Handbook of Automated Reasoning, chapter Unification
Theory, pages 441–526. Elsevier, 2001.

23

2. I. Cervesato, F. Pfenning, D. Walker, and K. Watkins. A concurrent logical frame-
work II: Examples and applications. Technical Report CMU-CS-02-102, Computer
Science Department, Carnegie Mellon University, 2002.

3. I. Cervesato and A. Scedrov. Relating State-Based and Process-Based Concurrency
through Linear Logic. Information & Computation, 207(10):1044–1077, 2009.

4. V. Diekert and G. Rozenberg, editors. The Book of Traces. World Scientific, 1995.
5. Carl Adam Petri. Fundamentals of a theory of asynchronous information flow. In

Proc. IFIP, pages 386–390, Amsterdam, 1963. North Holland Publ. Comp.
6. V.N. Zemlyachenko, N.M. Korneenko, and R.I. Tyshkevich. Graph isomorphism

problem. Journal of Mathematical Sciences, 29(4):1426–1481, 1985.

24

Unification modulo a property of the El Gamal

Encryption Scheme

Serdar Erbatur1, Santiago Escobar2, and Paliath Narendran1

1 University at Albany–SUNY (USA), {se,dran}@cs.albany.edu
2 Universidad Politécnica de Valencia (Spain), sescobar@dsic.upv.es

1 Introduction

Equational Unification has recently been applied in the field of formal analysis
of cryptographic protocols. Formal methods have been very useful in detecting
nontrivial flaws in protocols and also to verify their correctness; see Meadows [7]
for a survey of formal verification of cryptographic protocols. Terms in this
approach are often assumed to be in the free algebra, i.e., the function symbols
are not interpreted; in particular algebraic properties of function symbols are
ignored. Thus two terms are equal only if they are syntactically equal; thus the
analysis only requires standard unification. However, it is possible to extend this
analysis by also considering algebraic properties of terms, to get a deeper analysis
against attacks that can possibly exploit those properties [4, 5]. Therefore, E-
unification algorithms provide tools to achieve this goal.

In this work, we consider an axiom which is observed in El Gamal encryption.
We briefly explain how a message is encrypted within the El Gamal scheme. Let
p be a prime, g a generator of Z

p

and x the private key obtained from the range
1 to p� 2. Define h = g

x

mod p. The public key is the tuple (p, g, h). A message
m is encrypted by first selecting a random integer r s.t. gcd(r, p � 1) = 1 and
then computing

a ⌘ g

r

mod p, b ⌘ m ⇤ hr

mod p

The ciphertext of m is the pair (a, b). Let us define B(m, r) = m ⇤ h

r. When
using this functionality, there is an important property of B that could be taken
into account. This property is unfolded as follows:

B(m1, r1) ⇤B(m2, r2) = m1 ⇤ hr1 ⇤m2 ⇤ hr2

and
B(m1, r1) ⇤B(m2, r2) = m1 ⇤m2 ⇤ hr1+r2 (mod q)

where h

r1+r2 can be written (abstracted) as r1 ~ r2. Therefore the equality of
interest is

B(m1, r1) ⇤B(m2, r2) = B(m1 ⇤m2, r1 ~ r2)

In the rest of the paper, we consider the theory with this equality, which we
will denote by E . In Section 2 we give an algorithm and prove decidability of

25

E-unification. A novel feature of our approach is the use of types in detecting
non-termination. We follow the standard notation in the literature, see [2] for
more details.

2 Unification modulo E

We present decidability of E-unification by constructing an algorithm along with
a proof of correctness. First, we define a set of inference rules based on standard
forms and observe that those rules are complete and sound similarly to the case
in [1]. This is not very di↵erent from our approach in earlier papers, but the
novelty is that termination of the algorithm (i.e., inference rules) is obtained by
introducing a type system for function symbols of E . Note that E is not defined
as a typed theory. However, using types as described later in this section allows
us to identify a set of equivalence classes that does not grow. Then through a
series of lemmas we show how to detect infinite splitting, which is the hardest
type of failure to detect since new variables are continuously introduced into an
E-unification problem. Thus, the algorithm either transforms an E-unification
problem to dag-solved form or returns failure by finding (i) a function clash,
(ii) (extended) cycle induced by relations among the variables, or (iii) variables
which split indefinitely.

The function symbols B, ⇤ and ~ are cancellative, i.e., if s1, t1, s2, t2 are
ground terms in normal form, then B(s1, t1) =E B(s2, t2) if and only if s1 =E s2

and t1 =E t2; similarly for the other symbols. This can be shown using the fact
that E can be oriented either way to get a convergent rewrite system.

We now define several relations among variables:

– U �
r⇤ V i↵ there is an equation U = T ⇤ V

– U �
l⇤ V i↵ there is an equation U = V ⇤ T

– U �
r~ V i↵ there is an equation U = T ~ V

– U �
l~ V i↵ there is an equation U = V ~ T

– U �
rB V i↵ there is an equation U = B(T, V)

– U �
lB V i↵ there is an equation U = B(V, T)

– U �~ V i↵ U �
r~ V or U �

l~ V

– U �⇤ V i↵ U �
r⇤ V or U �

l⇤ V

– U �
B

V i↵ U �
rB V or U �

lB V

Let ⇠
lp(⇤) and ⇠

lp(B) be the reflexive, symmetric and transitive closures of
�

l⇤ and �
lB respectively. Also, let �=�~ [�⇤ [�

B

.

(a) Variable Elimination:
{X =?

V }] EQ
{X =?

V } [[V/X](EQ)
if X occurs in EQ

(b) Cancellation on B:
EQ] {X =?

B(V, Y), X =?
B(W,T)}

EQ [{X =?
B(V, Y), V =?

W, Y =?
T}

26

(c) Cancellation on ‘⇤’:
EQ] {X =?

V ⇤ Y, X =?
W ⇤ T}

EQ [{X =?
V ⇤ Y, V =?

W, Y =?
T}

(d) Cancellation on ‘~’:
EQ] {X =?

V ~ Y, X =?
W ~ T}

EQ [{X =?
V ~ Y, V =?

W, Y =?
T}

(e) Splitting:
EQ] {X =?

B(V, Y), X =?
W ⇤ Z}

EQ [{X =?
W ⇤ Z, V =?

V0 ⇤ V1, Y =?
Y0 ~ Y1, W =?

B(V0, Y0), Z =?
B(V1, Y1) }

(f) Failure Rule 1:
EQ] {X =?

B(V, Y), X =?
W ~ T}

FAIL

(g) Failure Rule 2:
EQ] {X =?

V ⇤ Y, X =?
W ~ T}

FAIL

(h) Occur-Check:
EQ

FAIL

if X �+
X for some X

A set of equations (i.e., a unification problem) is said to be in dag-solved form

(or d-solved form) if and only if they can be arranged as a list
x1 =?

t1, . . . , xn =?
tn

where (a) each left-hand side x

i

is a distinct variable, and (b) 8 1 i j n:
x

i

does not occur in t

j

[6].
The variable X in the splitting rule is called an e-peak . That is, an e-peak

is a variable X such that X �
l⇤ W , X �

r⇤ Z, X �
lB V and X �

rB Y for
some variables V, Y,W,Z. The rules (a) – (h) can be applied in any order but
we propose the following strategy for e�ciency in reaching the dag-solved form.
Rules (a), (f), (g) and (h) have the highest priority, followed by (b), (c) and (d).
Finally the rule (e) has the lowest priority.

Lemma 1. Rules (a) – (h) are sound and complete for E-unification.

Proof. The result is obtained in a similar way to that of [1]. ut

Apart from rules (f), (g) and (h), another failure case is infinite splitting. A
necessary and su�cient condition for this, along with a failure rule, will be given
later in this paper. Two example cases where rule (e) applies infinitely because
of a variable shared between the first argument of B and an argument of ⇤ are
shown below. We underline those equations that give rise to a new e-peak in the
conclusion of the inference rule.

(1) Infinite Splitting Case 1:
EQ] {X =?

B(V, Y), X =?
V ⇤ Z}

EQ [{X =?
V ⇤ Z, V =?

V0 ⇤ V1, Y =?
Y0 ~ Y1, V =?

B(V0, Y0), Z =?
B(V1, Y1) }

(2) Infinite Splitting Case 2:

27

EQ] {X =?
B(V, Y), X =?

W ⇤ V }
EQ [{X =?

W ⇤ V, V =?
V0 ⇤ V1, Y =?

Y0 ~ Y1, W =?
B(V0, Y0), V =?

B(V1, Y1) }

Note that if a variable is shared between the second argument of B and the
first or second argument of ⇤, this does not lead to infinite splitting:

(3) Example:
EQ] {X =?

B(V, Y), X =?
W ⇤ Y }

EQ [{X =?
W ⇤ Y, V =?

V0 ⇤ V1, Y =?
Y0 ~ Y1, W =?

B(V0, Y0), Y =?
B(V1, Y1)}

By failure rule (f), case (3) results with a Function Clash. In contrast, note
that cases (1) and (2) cause infinite splitting since they both give rise to e-peaks

repeatedly. To explain this, we first assign the set of types {↵, �} to arguments
of function symbols as follows:

B : ↵ ⇥ � ! ↵, ⇤ : ↵ ⇥ ↵ ! ↵, ~ : � ⇥ � ! �

This type mechanism is not strict: in fact one may consider {↵, �} as a set
of attributes. Note that a term such as B(X,X) would be problematic for strict
typing but it is reasonable to assume that X has both ↵ and � as “attributes” in
this case. This also explains how types are assigned to existing variables. As an
example, the equation U1 =?

V ⇤W and U2 =?
V ~W are typed properly in this

discipline: U1 with ↵, U2 with � and both V and W with ↵ and �, respectively.
We, in general, assign types to variables as follows. A variable V is assigned

type ↵ if and only if there exists a variable U such that one of U �⇤ V , U �
lB V ,

V �⇤ U , or V �
lB U holds. Likewise, a variable V is assigned type � if and

only if there exists a variable U such that U �~ V or U �
rB V or V �~ U or

V �
rB U .

We can now observe that in (1) and (2) the new peaks have type ↵. However,
the set V ar(S) for a problem S may get larger because of splitting. Also, if V is
the representative of an equivalence class of variables with respect to a relation
R 2 {⇠

lp(⇤),⇠lp(B)}, i.e., [V]
R

, then obviously all variables in [V]
R

have the
same type as V .

As seen in rule (e), a variable T can split in two ways: either as T = T0⇤T1 or
as T = T0 ~ T1. The splitting rule (e) may be applied further to new variables,
and in general we may obtain a variable T

!

where ! 2 {0, 1}⇤ is a string of 0’s
and 1’s. Therefore we adopt the general discipline for creating new variables as:
T

!

= T

!0 ⇤ T!1 or T

!

= T

!0 ~ T

!1
3. Also, if ! = �, the empty string, then

T

!

= T , i.e., T is an original variable. For a variable V , define V = {V
!

| ! 2
{0, 1}⇤}. Note that V may be infinitely large.

Lemma 2. Let V be of type ↵ and |V | be infinite. Then any descendant V

!

,

where ! 2 {0, 1}⇤ and V �+
⇤ V

!

, joins an originally existing ⇠
lp(B)-equivalence

class which has type ↵.

Our main observations are (i) if a variable splits, then its descendants have
the same type, see Lemma 2 and (ii) in case of infinite splitting the new e-peaks

3 Using the type discipline given earlier, we assume that T is ↵-typed in the former
case and �-typed in the latter.

28

are always ↵-typed. We justify (ii) later in this section. Thus (i) and (ii) allow
us to e↵ectively leave �-typed variables out.

Definition 1. Let V = {X
w

| X is ↵-typed and ! 2 {0, 1}⇤} i.e., the set of

variables which have type ↵ in a given problem. In other words, V includes the

original variables with type ↵ and the new variables that ↵ is assigned as type.

Lemma 3. Let S be an E-unification problem and X 2 V ar(S) such that X is

an e-peak. Then X has type ↵, i.e., X 2 V.
Let us consider grouping elements of V with respect to the equivalence re-

lation ⇠
lp(B). That is, we write V =

U
[X]⇠lp(B)

where X 2 V. Therefore, we
have a set of ⇠

lp(B)-equivalence classes such that the number of them remains
the same even if splitting applies infinitely.

Lemma 4. The number of ⇠
lp(B)-equivalence classes in V does not increase.

Let us define � =⇠
lp(B) � �⇤ � ⇠

lp(B). Then the following result gives us a
way to detect infinite splitting.

Lemma 5. If rule (e) applies infinitely, then there exists a �-cycle among ⇠
lp(B)-

equivalence classes in V.
We define an interpretation which gives a valid model for E . If B is interpreted as
projection to its first argument, i.e., left projection, then we getm⇤n = m⇤n out
of E . This is useful since the unification problem is solvable only if its interpreted
version is also solvable.

Lemma 6. Let P be an E-unification problem. If � is cyclic, then P is not

solvable.

Therefore we can define the following failure rule which deals with infinite split-
ting.

(i) Infinite Splitting:
EQ

FAIL

if � is cyclic in V

Lemma 7. Unification modulo E is decidable using rules (a)-(i) above.

3 Conclusion

We have shown decidability of unification modulo a theory with a single axiom
which is a property of the El-Gamal public key cryptosystem.

In [3], we show decidability of unification for a theory with symbols B and
⇤ through a similar outline of the results using the fact that the number of
⇠

lp(B)-classes remain same. On the other hand, the number of ⇠
lp(B)-classes

here does not remain the same in general; only the number of ⇠
lp(B)-classes in

a special subclass, that we identified through a type system, is non-decreasing.
Introducing types, which are not originally defined for the equational theory,
proved useful to show termination of the algorithm. Furthermore, the version of
E which has the same multiplication operator on the right, has an undecidable
unification problem as shown recently in [1].

29

References

1. S. Anantharaman, S. Erbatur, C. Lynch, P. Narendran, M. Rusinowitch. “Uni-
fication modulo Synchronous Distributivity”. Technical Report SUNYA-CS-
12-01, Dept. of Computer Science, University at Albany—SUNY. Available at
www.cs.albany.edu/~ncstrl/treports/Data/README.html (An abridged version to
be presented at IJCAR 2012.)

2. F. Baader, W. Snyder. “Unification Theory”. Handbook of Automated Reasoning ,
pp. 440–526, Elsevier Sc. Publishers B.V., 2001.

3. S. Erbatur, C. Lynch, P. Narendran. “Unification in Blind Signatures”. Presented
at FTP 2011. Available at www.cs.albany.edu/~se/blindsig_ftp2011.pdf

4. S. Escobar, C. Meadows, J. Meseguer. “Maude-NPA: Cryptographic Protocol Anal-
ysis Modulo Equational Properties”. In: Foundations of Security Analysis and De-
sign V, FOSAD 2007/2008/2009 Tutorial Lectures (A. Aldini, G. Barthe, and R. Gor-
rieri, eds.) LNCS 5705, pages 1–50.

5. S. Escobar, C. Meadows, D. Kapur, C. Lynch, C. Meadows, J. Meseguer, P. Naren-
dran, R. Sasse. “Protocol analysis in Maude-NPA using unification modulo homo-
morphic encryption”. In: Proceedings of the 13th International ACM SIGPLAN Con-
ference on Principles and Practice of Declarative Programming, July 20-22, 2011,
Odense, Denmark (P. Schneider-Kamp and M. Hanus, eds.), pages 65–76.

6. J.-P. Jouannaud, C. Kirchner. “Solving equations in abstract algebras: a rule-based
survey of unification.” Computational Logic: Essays in Honor of Alan Robinson, pp.
360–394, MIT Press, Boston (1991).

7. C. Meadows. “Formal Verification of Cryptographic Protocols: A Survey” ASI-
ACRYPT , pp. 135–150 (1994).

30

Bounded Second-Order Unification Using
Regular Terms

Tomer Ĺıbal

Institute of Computer Languages (E185)
Vienna University of Technology

Favoritenstraße 9, 1040 Vienna, Austria
shaolin@logic.at

Abstract. We present an algorithm for the bounded unification of second-
order problems. The algorithm extends G. P. Huet’s pre-unification al-
gorithm with rules for the generation and folding of regular terms. The
concise form of the algorithm allows the reuse of the pre-unification cor-
rectness proof. Furthermore, the regular terms can be restricted in order
to obtain termination over a restricted set of unifiers. Finally, the al-
gorithm can be integrated into higher-order resolution calculi, such as
constrained resolution (G. P. Huet), in order to obtain a complete cal-
culus that enjoys eager unification.

1 Introduction

A complete pre-unification algorithm, which does not terminate, was given by
G. P. Huet [3]. The problem was already shown to be undecidable for relatively
simple second-order fragments [6]. The complexity of the problem is connected
with the complexity of the generated terms, which can be further tracked down
to two sources, the number of bounded variables in the terms and cycles in the
unification problems. One approach to deal with this complexity using rami-
fied types was given by J. Goubault-Larrecq [2]. Another approach, given by
M. Schmidt-Schauß [10] [5], was to first fix a maximal number for the allowed
occurrences of bounded variables and then search for minimal unifiers only. A
known unification problem with a similar decidability proof is word unification
[7], which belongs to the family of context unification problems. Unifiers of con-
text unification problems are allowed to have terms with exactly one occurrence
of each bounded variable in their range. It is still not known whether the unifi-
ability of context problems is decidable.

When we are concerned not only with the unifiability problem, but with all
most general unifiers, such an approach is not enough and we have to revert
to the non-terminating pre-unification algorithm. This problem arises in some
applications of unification, most notably in the resolution calculus, where both
a search for all most general unifiers and a terminating unification algorithm are
desired properties.

In this paper we present an algorithm that captures these two properties.
First, we enumerate all pre-unifiers by the use of regular terms using the Kleene

31

star. Second, we can force the algorithm to terminate by fixing the number of
iterations allowed over the Kleene star, thus obtaining, not only minimal unifiers,
but in practice any possible pre-unifier.

Similar works are the finite representation of all unifiers for sub-classes of the
word problem by using graphs and regular expressions [1] and the description of
first-order cycles using finite automata [4].

2 Preliminaries

The unification problems dealt with in this paper are called bounded unification
problems and di↵er from the ones presented in [8] by restricting the signature
to unary second-order variables only. The restriction to unary second-order vari-
ables and even to second-order logic is done in order to simplify the presentation
and does not restrict the results.

Let ⌃ be a signature of function symbols, denoted f, g, h and let ar be a
function mapping ⌃ to natural numbers, which denotes its arity. Symbols with
arity 0 are called constant symbols. Let V1 be the set of first-order variables,
denoted x, y, z and V2 be the set of context variables, denoted X,Y, Z such that
both are disjoint from each other and from the signature and let V = V1 [V2.
We will denote a sequence of n terms (or variables, positions, etc.) using the
notation t

n

. Terms are formed by the grammar: t ::= x|f(t, .., t)|X(t). A term of
the form X(t) or x is called a flex term while f(t

n

) is called rigid. A variable not
occurring as an argument to another variable in a term is called a rigid variable

occurrence. Positions of sub-terms are defined as usual. Contexts extend the term
grammar by C[.] ::= [.]|f(t, .., C[.], .., t)|X(C[.]) and denote terms containing ex-
actly one occurrence of the hole ([.]), while n-contexts extend the term grammar
by C[.] ::= [.]|f(C[.], .., C[.])|X(C[.])|t and denote terms containing at most n

occurrences of the hole. A context di↵erent from [.] is called non-trivial. The no-
tation C(t) means replacing all occurrences of [.] in C[.] with t. Given a function
bbound: V2 ! N, a (ground) bounded substitution, denoted �, maps first-order
variables to (ground) terms and context variables X to (ground) n-contexts
where bbound(X) = n. The definitions of (ground) substitutions, unifiers, most

general unifiers and pre-unifiers are as in [12]. The bounded unification problem

(BUP) is the search for bounded pre-unifiers. Given a BUP � , V ar, V ar1 and V ar2

are the restrictions of V , V1 and V2 to the variables occurring in � . We further
assume knowledge of Huet’s pre-unification algorithm as presented in [12] as
well as its correctness results and the definitions of solved forms and pre-solved

forms.

3 Unification by Regular Terms

The algorithm presented in this section di↵ers from the one in [8] in several as-
pects. First, it is based completely on the rules of Huet’s algorithm, which makes
the algorithm and its correctness proofs more concise. Second, it enumerates all
pre-unifiers of a problem.

32

We first describe the concept of regular terms, which denote infinite sets
of contexts. Regular contexts extend the context grammar by using the Kleene
star C

r

[.] ::= C[.]|C(C
r

[.])|C⇤(C
r

[.]). Regular variables denote variables which
can be mapped to members described by regular contexts only and their set is
disjoint from the sets of first and context variables. We assume the existence of
a mapping between regular variables and regular contexts and therefore denote
regular variables by [D]

X

where D is a regular context.
Given a term f(s

n

) and a context variableX, the partial bindings PB(f(s
n

), X)
is the set {f(w1, .., wn

)|w
i

2 V1 [V2,⌃0<in

bbound(w
i

) = bbound(X)}. For
x 2 V1 we always assume bbound(x) = 0. A cycle c in a BUP � , is a sequence
t

n

.

= s

n

of equations of � such that for all 1 i n, the head symbol of s
i

is
a context variable that occurs rigidly in t

i�1 mod n

and that there is 1 j n,
such that t

j

is not a variable. A cycle is called a standard cycle if there is ex-
actly one such j. The variables X

n

are called cyclic variables of c and are also
denoted by X

i

2 c. The number n = m� 1, where m is the number of equations
in the cycle, is called the size of the cycle. Another equivalent definition of the
standard cycle size is the number of flex-flex equations in it whose heads are
context variables. Let t

j

= C[X
j+1 mod n

] in a standard cycle s for a non trivial
context C, then C is called the cycle context and is denoted by cc(c). The set
of all standard cycles in a unification problem � is denoted by scy(�).

The unification algorithm in Fig. 1 contains an additional mapping ibound

from context variables to natural numbers, which denotes the maximal depth of
terms which can be generated by applying the (Imitate) rule.

We define the first-order bound of a BUP � (denoted fbound(�)) as (k+1)⇤ l,
where k is the number of variables and l is the maximum rigid depth of a term
in � . Another key concept is the computation of regular contexts from standard
cycles, which is done in two phases. In the first phase we replace, using the
function rec, a context variable with a regular context variable while in the
second phase, taking place in rules (Rec

1
0) and (Rec

⇤
) through the function

holes+, we insert some extra holes into the generated terms. The original hole
will be referred to as the principal hole. Given a term T with multiple holes, the
notation T

p

(t) means replacing only the principle hole with the term t. In the
algorithm, we initialize ibound(Y) = fbound(�) for all variables Y 2 V ar2 and
each call of (Imitate), (Project) or (Rec) is followed by (Bind

X

).

4 Correctness of the Algorithm

In this section we sketch the completeness proof for BUAwith regard to the set
of pre-unifiers generated by Huet’s algorithm. The soundness of the algorithm
trivially follows from the fact each non-trivial rule applies only substitutions. The
proof is based on three things. First it is relatively easy to see that there can
be at most m applications of the (Project) (Bind

X

)and (Rec)rules, where
m is the total number of allowed bounded variable occurrences according to
bbound. Second, the close relationship between first-order unification and BUA

without the (Project), (Bind
X

) or (Rec) makes it possible to prove that if

33

� [{t .

= t}
�

(Delete)

� [{f(s
n

)
.

= f(t
n

)}
� [{s1

.

= t1, .., sn
.

= t

n

}
(Decomp)

� [{x .

= t} x 62 V ar(t)

�{x 7! t}
(Bind

x

)

� [{X([.])
.

= t} X 62 V ar(t)

�{X 7! t}
(Bind

X

)

� X(s)
.

= t 2 �, t 62 V ar(�), u 2 PB(X, t), ibound(X) > 0

� [{X([.])
.

= u}
(Imitate)

1

� X(s)
.

= t 2 �, t 62 V ar(�)

� [{X([.])
.

= [.]}
(Project)

2 � c 2 scy(�), X 2 c, C 2 rec(c,X)

� [{X[.]
.

= C}
(Rec)

� [L⇤
0(L[.])]

X

.

= t 2 �, L 2 C

C

�{[L⇤
0(L[.])]

X

7! holes+(L)}
(Rec

1
0)

2 � [L⇤(L2[.])]X
.

= t 2 �, L2 2 C

R

�{[L⇤(L2[.])]X 7! [L2[.]]X}
(Rec

2
0)

� [L⇤(L2[.])]X
.

= t 2 �

�{[L⇤(L2[.])]X 7! (holes+(L))
p

([L⇤(L2[.])]X)}
(Rec

⇤
)

1. all fresh variables wi 2 V2 introduced in u have ibound(wi) = ibound(X)� 1.
2. for all variables Y 2 V ar2, ibound(Y) = fbound(�).

Fig. 1. BUA - Unification Rules

a context variable is not and cannot be a part of a cycle in the problem, then
the maximal number of (Imitate) applications on it is bound by the first-order
bound (fbound). The third and most involved claim is that given a standard
cycle, then for any pre-unifier of the problem, there is a context variable in the
cycle which is mapped by the unifier to a term generated by the functions rec
and holes+. This can be proved by induction on the size of the standard cycles.
The variables in cycles of size 1 must be mapped, in any pre-unifier, to an n-
context of the form holes+(C⇤

C

0) where C is the cycle context and C

0 is a prefix
of C. For bigger cycles, either one variable is mapped to such a context or all
variables are mapped to contexts with such a context as a prefix. By utilizing a
technique called derailing [8] we can obtain a smaller cycle.

5 Termination and Minimal Unifiers

If we are interested in minimal unifiers only, then we can restrict the iterations
over the Kleene star used in the regular contexts. The restriction is based on the
exponent of periodicity, while the completeness proof is based on the periodicity
lemma [9]. Termination of the algorithm in this case is shown by using the mea-
sure µ =< m1,m2,m3,m4,m5,m6 > where: m1 is the sum of allowed bounded
variables in the problem, m2 = size(V ar2), m3 is the sum of remaining allowed
iterations over the Kleene stars, m4 = ⌃

X2V ar2ibound(X), m5 is the number
of first-order variables and m6 is the number of symbols other than

.

= in the
problem.

6 Conclusion

When comparing the algorithm given in this paper with those given in [8] and
[10] we can say the following. First, the algorithm in Fig. 1 is a direct exten-

34

sion of Huet’s algorithm and contains few rules only, in contrast to the other
algorithms. Second, the correctness proofs are given with respect to Huet’s algo-
rithm, making them simpler. The most important di↵erence is the enumeration
of all pre-unifiers by the algorithm. The fact that termination can be obtained
by restricting the (Rec

⇤
) rule makes the algorithm a suitable replacement of

Huet’s algorithm in higher-order resolution. Minimal unifiers are obtained using
the local exponent of periodicity, while the rest of the pre-unifiers are obtained
by back-tracking and using non-local versions of the exponent. Another corol-
lary of the algorithm is that bounded unification problems are finitary if the
unification problem does not include any cycle. We hope that both these results
will allow for practical resolution calculi for obtaining the refutations of concrete
problems, especially mathematical problems. Investigations of real mathematical
proofs containing one induction, especially if considering the arithmetical com-
prehension only [11], hint that for these classes we can restrict the resolution
calculus to acyclic unification constraints and still preserve completeness.

References

1. Habib Abdulrab, Pavel Goralcik, and G. S. Makanin. Towards parametrizing word
equations. ITA, 35(4):331–350, 2001.

2. Jean Goubault-Larrecq. Ramified higher-order unification. In Proceedings of the
12th Annual IEEE Symposium on Logic in Computer Science, LICS ’97, pages
410–, Washington, DC, USA, 1997. IEEE Computer Society.

3. Gérard P. Huet. A unification algorithm for typed lambda-calculus. Theor. Com-
put. Sci., 1(1):27–57, 1975.

4. Philippe Le Chenadec. The finite automaton of an elementary cyclic set. Technical
Report RR-0824, INRIA, April 1988.

5. Jordi Levy, Manfred Schmidt-Schauß, and Mateu Villaret. On the complexity of
bounded second-order unification and stratified context unification. Logic Journal
of the IGPL, 19(6):763–789, 2011.

6. Jordi Levy and Margus Veanes. On the undecidability of second-order unification.
Inf. Comput., 159(1-2):125–150, 2000.

7. G. S. Makanin. On the decidability of the theory of free groups (in russian). In
FCT, pages 279–284, 1985.

8. Manfred Schmidt-Schauß. Decidability of bounded second order unification. Inf.
Comput., 188:143–178, January 2004.

9. Manfred Schmidt-Schauß and Klaus U. Schulz. On the exponent of periodicity of
minimal solutions of context equation. In RTA, pages 61–75, 1998.

10. Manfred Schmidt-Schauß and Klaus U. Schulz. Decidability of bounded higher-
order unification. J. Symb. Comput., 40(2):905–954, August 2005.

11. S.G. Simpson. Subsystems of Second Order Arithmetic. Perspectives in Logic.
Cambridge University Press, 2010.

12. Wayne Snyder and Jean H. Gallier. Higher-order unification revisited: Complete
sets of transformations. J. Symb. Comput., 8(1/2):101–140, 1989.

35

Experiments in Admissibility

George Metcalfe and Christoph Röthlisberger

Mathematics Institute, University of Bern
Sidlerstrasse 5, Bern 3012, Switzerland

{george.metcalfe,roethlisberger}@math.unibe.ch

1 Introduction

The validity problem for finite algebras (and similarly, for finite-valued logics) is
well-understood and “solved” in the sense that there exist general methods for
obtaining proof systems for checking validity and standard optimization tech-
niques for such systems (see, e.g., [10]). However, the corresponding problem
of checking admissibility of quasiequations in finite algebras is not so well-
understood. The problem is decidable (see [18]), but a naive approach leads to
computationally unfeasible procedures even for small algebras. Our goal in this
work (which extends [17]) is a general method for obtaining practical algorithms
facilitating “experiments in admissibility” for arbitrary finite algebras.

Let us fix a (usually finite) non-trivial algebra A for a language L with
formula algebra FmL, referring to [3] for undefined notions from universal al-
gebra. An A-unifier for a finite set of equations Σ ⊆ FmL is a homomorphism
σ : FmL → FmL satisfying |=A σ(ϕ) ≈ σ(ψ) for all ϕ ≈ ψ ∈ Σ. A quasiequation
Σ ⇒ ϕ ≈ ψ is A-admissible if each A-unifier of Σ is also an A-unifier of ϕ ≈ ψ.
Note that Σ is A-unifiable in A if and only if (henceforth, iff) Σ ⇒ p ≈ q is not
A-admissible where p, q are any distinct variables not occurring in Σ.

If A has n elements, then A-admissibility amounts to validity in the finite
free algebra FA(n) and is therefore decidable (see [18]).1 However, even for small
n, the size of FA(n) may be prohibitively large. This is particularly striking when
compared with the fact that validity and admissibility in A may coincide (A is
said to be structurally complete), or coincide at least for the cases where the
premises Σ of a quasiequation Σ ⇒ ϕ ≈ ψ are A-unifiable (A is then said to
be almost structurally complete). In other cases, admissibility of a quasiequation
corresponds to holding in other, often quite small, algebras (see, e.g., [14, 4, 16]).
In this work we describe algorithms for discovering such facts, illustrating our
methods with a selection of well-known finite algebras.

Admissibility (in tandem with unification) has been studied intensively in the
context of intermediate and transitive modal logics in [18, 11, 6, 7, 13, 5], leading

1 For a cardinal κ, FK(κ) denotes the free algebra of K with κ generators. Note that
when considering admissibility, it can be helpful to view the elements of FK(κ) for
κ ≤ ω as equivalence classes [ϕ] of formulas ϕ containing at most κ variables, defined
with respect to the congruence relating ϕ and ψ whenever |=K ϕ ≈ ψ.

36

also to proof systems for checking admissibility [8, 12, 1], and for certain many-
valued logics in [18, 4, 14–16]. However, a general theory for the finite-valued case
has so far been lacking. Our broader goal in this work is to automatically obtain
admissible rules for finite algebras (and corresponding logics) that may then
be used either to simplify and speed up derivations for checking validity, or to
establish meta-level properties of the quasivarieties generated by these algebras.

2 Algorithms for Admissibility

Let us fix during this section a finite non-trivial algebra A for a language L
and recall that checking whether a quasiequation Σ ⇒ ϕ ≈ ψ is A-admissible
is equivalent to checking the validity of Σ ⇒ ϕ ≈ ψ in the finite free algebra
FA(|A|). The following observation, which provides the basis for our algorithms,
shows that admissibility may also be equivalent to validity in certain (perhaps
much smaller) subalgebras of FA(|A|).2

Proposition 1. Given B ∈ Q(FA(|A|)) and A ∈ V(B):

(a) Q(B) = Q(FA(|A|)).
(b) Σ ⇒ ϕ ≈ ψ is admissible in A iff Σ |=B ϕ ≈ ψ.

In particular, admissibility amounts to validity in any subalgebra B of FA(|A|)
of which A is a homomorphic image (A ∈ H(B)). This suggests a procedure:

(i) Find the smallest free algebra FA(m) (m ≤ |A|) such that A ∈ H(FA(m)).
(ii) Compute the set Sub(FA(m)) of subalgebras of FA(m).
(iii) Construct the set Adm(A) of all B ∈ Sub(FA(m)) such that A ∈ H(B).
(iv) Derive a proof system for checking satisfiability in a smallest B ∈ Adm(A).

Steps (i)-(iii) have been implemented using macros implemented for the Algebra
Workbench [20]. Step (iv) can be implemented directly making use of a system
such as MUltlog/MUltseq [19, 9] or 3TAP [2]. Note, however, that computing all
the subalgebras of a free algebra is rather inefficient. Hence, in our current im-
plementation, subalgebras are generated and tested immediately for suitability,
storing upper bounds for the best algebra, which leads to a significant reduction
in the number of algebras to be tested.

It is reasonable to ask at this point whether the procedure computes the
smallest algebra that generates Q(FA(|A|)). Unfortunately, this is not the case.
Consider the algebra P = 〈{a, b, c, d}, %〉 where the unary operation % and the
free algebras FP(n) are described by the following diagrams:

2 A class of L-algebras K is called a variety or quasivariety if it is axiomatized by a
set of L-equations or L-quasiequations, respectively. The variety V(K) and quasiva-
riety Q(K) generated by K are the smallest variety and quasivariety containing K,
respectively. Let H, I, S, P, and PU , be, respectively, the class operators of taking
homomorphic images, isomorphic images, subalgebras, products, and ultraproducts.
Then V(K) = HSP(K) and Q(K) = ISPPU (K); moreover, for a finite algebra A, the
latter refines to Q(A) = ISP(A).

37

A |A| Quasivariety Q(A) Free algebra |Output Algebra|

!L3 3 algebras for !L3 |FA(1)| = 12 6
!L
→
3 3 algebras for !L→

3 |FA(2)| = 40 3
B1 3 Stone algebras |FA(1)| = 6 3
C3 3 Kleene algebras |FA(1)| = 6 4
C

L
3 3 Kleene lattices |FA(2)| = 82 4

S
→¬
3 3 algebras for RM→¬ |FA(2)| = 264 6
S
→
3 3 algebras for RM→ |FA(2)| = 60 3

G3 3 algebras for G3 |FA(2)| = 18 3
D

L
4 4 De Morgan lattices |FA(2)| = 166 8

D4 4 De Morgan algebras |FA(2)| = 168 10
P 4 Q(P) |FA(2)| = 6 6
B2 5 Q(B2) |FA(1)| = 7 5

Table 1. Experiments in admissibility

aP

b

c d

FP(n)

x1 %(x1) %(%(x1))

xn %(xn) %(%(xn))

The smallest algebra obtained by the procedure is the free algebra FP(2) on
two generators which has six elements. However, P can also be embedded into
FP(1) × FP(1) and hence P itself generates Q(FP(4)). This problem can be
avoided by considering the representation of a finite algebra A as a subdirect
product of subdirectly irreducible algebras with respect to Q(A), and seeking
embeddings of these algebras into FA(|A|).

3 Experiments

In this section, we describe admissibility results obtained using our algorithm
for some well-known (small) finite algebras, collating these findings in Table 1.

Note first that in some cases, A-admissibility coincides with validity in A;
that is, Q(A) = Q(FA(|A|)) and we say that A (or Q(A)) is structurally com-
plete. Consider for example the algebra (which provides algebraic semantics for
the implicational fragment of the substructural logic RM) S→

3 = 〈{−1, 0, 1},→〉
with the binary operation → described by:

→ -1 0 1
-1 1 1 1
0 -1 0 1
1 -1 -1 1

38

Then our procedure shows that the 60-element free algebra FS→

3
(2) (the smallest

free algebra required) possesses a subalgebra isomorphic to S→
3 , and hence that

S→
3 is structurally complete. Similarly, known structural completeness results

have been confirmed for

!L→
3 = 〈{0, 1

2
, 1},→!L〉 the 3-element Komori C-algebra

B1 = 〈{0, 1

2
, 1},min,max,¬G〉 the 3-element Stone algebra

G3 = 〈{0, 1

2
, 1},min,max,→G〉 the 3-element positive Gödel algebra

where x →!L y = min(1, 1 − x + y), x →G y is y if x > y, otherwise 1, and
¬Gx = x →G 0. A new structural completeness result has also been established
for the pseudocomplemented distributive lattice B2 obtained by adding a top
element to the 4-element Boolean algebra. Note, however, that the procedure
timed out for the case of the 9-element algebra B3.

Observe now that in some cases, structural completeness fails but a quasiequa-
tion Σ ⇒ ϕ ≈ ψ is A-admissible iff either Σ ⇒ ϕ ≈ ψ is valid in A or Σ is not
A-unifiable; that is, A (or Q(A)) is said to be almost structurally complete. Let
us note in passing that the following result provides a useful characterization of
this property:

Proposition 2. The following are equivalent for any finite algebra A and sub-
algebra B of FA(1):

(1) A is almost structurally complete.
(2) Q(FA(|A|)) = Q(A×B).

Consider the 4-element algebra DL
4 = 〈{⊥, a, b,,},∧,∨,¬〉 (which generates

the variety of De Morgan lattices) consisting of a distributive lattice with an
involutive negation defined as shown below:

⊥

a b

$

Our procedure finds smallest suitable algebras isomorphic to D4 × 2, where 2

is the 2-element Boolean lattice and a subalgebra of FDL
4
(1), so DL

4 is almost
structurally complete. Other almost structurally complete algebras include

!L3 = 〈{0, 1

2
, 1},→!L,¬!L〉 the 3-element #Lukasiewicz algebra

S→¬
3 = 〈{−1, 0, 1},→,¬S〉 the 3-element algebra for the {→,¬}-fragment of RM

where ¬!L = 1− x and ¬Sx = −x.
On the other hand, consider the algebra D4 = 〈{⊥, a, b,,},∧,∨,¬,⊥,,〉

(which generates the variety of De Morgan algebras) defined as above for DL
4 but

39

with extra constants ⊥ and ,. In this case, the smallest suitable algebra obtained
by our procedure has 10 elements (D4 × 2 with extra top and bottom elements,
in fact). Finally, similar results have also been obtained for Kleene algebras
and lattices (subvarieties of De Morgan algebras and lattices) generated by the
3-element chains C3 = 〈{,, a,⊥},∧,∨,¬,⊥,,〉 and CL

3 = 〈{,, a,⊥},∧,∨,¬〉
where ¬ swaps ⊥ and , and leaves a fixed. In both cases the smallest algebra
found automatically by our procedure, is a 4-element chain.

References

1. S. Babenyshev, V. Rybakov, R. A. Schmidt, and D. Tishkovsky. A tableau method
for checking rule admissibility in S4. In Proceedings of UNIF 2009, volume 262 of
ENTCS, pages 17–32, 2010.

2. B. Beckert, R. Hähnle, P. Oel, and M. Sulzmann. The tableau-based theorem
prover 3TAP , version 4.0. In CADE ’96, volume 1104 of LNCS, pages 303–307.
Springer, 1996.

3. S. Burris and H. P. Sankappanavar. A Course in Universal Algebra, volume 78 of
Graduate Texts in Mathematics. Springer-Verlag, New York, 1981.

4. P. Cintula and G. Metcalfe. Structural completeness in fuzzy logics. Notre Dame
Journal of Formal Logic, 50(2):153–183, 2009.

5. P. Cintula and G. Metcalfe. Admissible rules in the implication-negation fragment
of intuitionistic logic. Annals of Pure and Applied Logic, 162(10):162–171, 2010.

6. S. Ghilardi. Unification in intuitionistic logic. Journal of Symbolic Logic, 64(2):859–
880, 1999.

7. S. Ghilardi. Best solving modal equations. Annals of Pure and Applied Logic,
102(3):184–198, 2000.

8. S. Ghilardi. A resolution/tableaux algorithm for projective approximations in IPC.
Logic Journal of the IGPL, 10(3):227–241, 2002.

9. A. J. Gil and G. Salzer. Homepage of MUltseq. http://www.logic.at/multseq.
10. R. Hähnle. Automated Deduction in Multiple-Valued Logics. OUP, 1993.
11. R. Iemhoff. On the admissible rules of intuitionistic propositional logic. Journal

of Symbolic Logic, 66(1):281–294, 2001.
12. R. Iemhoff and G. Metcalfe. Proof theory for admissible rules. Annals of Pure and

Applied Logic, 159(1–2):171–186, 2009.
13. E. Jeřábek. Admissible rules of modal logics. Journal of Logic and Computation,

15:411–431, 2005.
14. E. Jeřábek. Admissible rules of !Lukasiewicz logic. Journal of Logic and Computa-

tion, 20(2):425–447, 2010.
15. E. Jeřábek. Bases of admissible rules of !Lukasiewicz logic. Journal of Logic and

Computation, 20(6):1149–1163, 2010.
16. G. Metcalfe and C. Röthlisberger. Admissibility in De Morgan algebras. Soft

Computing, to appear.
17. G. Metcalfe and C. Röthlisberger. Unifiability and admissibility in finite algebras.

Proceedings of CiE 2012, to appear.
18. V. Rybakov. Admissibility of Logical Inference Rules, volume 136 of Studies in

Logic and the Foundations of Mathematics. Elsevier, Amsterdam, 1997.
19. G. Salzer. Homepage of MUltlog. http://www.logic.at/multlog.
20. M. Sprenger. Algebra Workbench. Homepage: http://www.algebraworkbench.net.

40

Author Index

B

Baader, Franz 1, 3

Borgwardt, Stefan 3

Bouchard, Christopher 4

C

Cabrer, Leonardo Manuel 10

Cervesato, Iliano 14

E

Erbatur, Serdar 20

Escobar, Santiago 20

G

Gero, Kimberly 4

J

Jeřábek, Emil 2

L

Libal, Tomer 26

M

Metcalfe, George 31

Morawska, Barbara 3

N

Narendran, Paliath 4, 20

P

Pfenning, Frank 14

R

Röthlisberger, Christoph 31

S

Sacchini, Jorge Luis 14

Schuermann, Carsten 14

Simmons, Robert 14

