

The

Compiler Compiler

(Amended August 1963)

by R.A. BROOKER

I.R. MacCALLUM
D MORRIS
J.S. ROHL
All of Manchester University

Transcribed for the web by Dik Leatherdale and Iain MacCallum from an
original document preserved by Bill Williams. Scans of Bill Williams’ original
(with hand-written amendments and later notes which readers may find
helpful) may be found at photos.datahighways.co.uk/photos/index.php?cat=4.
All corrections gratefully received by dik@leatherdale.net.

INTERNATIONAL COMPUTERS AND TABULATORS LIMITED,
 68 NEWMAN STREET, LONDON W.1.

Reprinted with corrections from
ANNUAL REVIEW IN AUTOMATIC PROGRAMMING Volume III

PERGAMON PRESS
OXFORD LONDON NEW YORK PARIS

1963

The Compiler Compiler

R. A. BROOKER, I. R. MacCALLUM, D. MORRIS and J. S. ROHL

University of Manchester
This paper is a sequel to the authors' previous papers in Volume 2 of this

Review and elsewhere. It is a detailed specification of a system for describing the
form and meaning of the statements in a phrase structure language (for example
a scientific autocode). Given such a description the compiler compiler will
generate (in machine code) a compiler for the language, i.e. a program which can
read and translate (also into machine code) another program written in that
language.

INTRODUCTION

This system may be considered to operate in two phases. In the primary
phase it accepts and records the definition of a phrase structure language, and in
the secondary phase it will translate a source program written in that language.
The two phases are not completely separate and further definitions can be given
in the middle of a source program. Their influence of course only extends forward
and not back to the material already processed.

The primary material consists mainly of format definitions and phrase
definitions which describe the form (or syntax) of statements and their
constituent expressions, and format routines which describe their meaning (or
semantics). The meaning of a new format is defined in terms of existing formats,
which may be either built–in or previously defined ones. Both the form and
meaning of expressions can be defined recursively, which is particularly useful in
dealing with algebraic or other formulas which involve nested parentheses.

Five kinds of statements comprise the basis primary language (it can be
extended) and they are recognized by the following headings or master phrases:

PHRASE
FORMAT CLASS
FORMAT
ROUTINE

The end of each statement is recognized by the start (i.e. the master phrase)

of the next. There are two situations where there may not be a further master
statement, namely when the material following is source language or when there
is no further material. In these cases the master phrases:

END OF PRIMARY MATERIAL
END OF MESSAGE

2 R.A. Brooker, I.R. MacCallum, D.Morris and J.S. Rohl

should be used. The master phrase 'END OF PRIMARY MATERIAL' will have the
effect of removing all facilities for translating primary material (e.g. PHRASEs,
FORMATs, ROUTINEs) thus reducing the size of the generated compiler.

All subsequent references to composite symbols and the DCS are incorrect. The latter does not now
exist. Composite symbols are now represented by 24 bit words which contain a 1 in digit 23 (most
significant) and the basic symbols which form the composite symbol in digits 2 ⟶ 22. Seven digits are used
for each symbol and the symbols are ordered starting with the one of smallest numerical value in digits 2 ⟶
8. Composite symbols formed from more than three basic symbols are not allowed.

For example the internal representations of A and ≢ in octal are:
40126204
6534074

Symbols and the line reconstruction process
In subsequent sections a meta–language is described, by means of which (in

PHRASE and FORMAT statements) the syntax of a phrase structure
programming language can be defined. Except for the master phrases and
certain symbols which have meta–syntactical significance, the symbols used in
this meta–language represent the same symbols in the language being defined.
Although the language being defined, and the meta–language description, will
eventually be prepared for input to the computer as a sequence of characters
punched on paper tape (or cards), the emphasis is placed on the printed form of
this input. In fact, the system reads the input stream a line at a time submitting
each to a process called line reconstruction. This process results in a sequence of
symbols one for each printing position across the page up to the last printed
symbol on the line, which is then followed by an 'end line' symbol. The 'space'
symbol will be used to represent spaces between printed symbols, but no space
symbols will appear between the last printed symbol and the end of line symbol.

Each symbol in a reconstructed line represented by a code number (or serial
number) contained in a 24–bit word. There are two kinds of symbols, namely basic
symbols and composite symbols. However, the distinction is not usually important
and composite symbols can only occur in the case of input from 7–hole tape (i.e.
Flexowriter). Basic symbols are those which can be produced by depressing a single
key on the 'editing equipment' (assuming that the required 'case' or 'shift' is already
selected). Composite symbols are those which are synthesized by utilizing the back
space key on the Flexowriter in order to overprint one symbol with another.

The code number representing a basic symbol is the 6–bit internal character
code for characters on the 'inner shift' and 64 plus this quantity for characters on the
'outer shift' (see Atlas Manual). Thus the code numbers of basic symbols will be less
than 128.1 For the purpose. of converting composite symbols to the internal code
numbers a dictionary of composite symbols (DCS) which relates to the groups of
basic symbol comprising a composite symbol to the required code numbers. The
symbols representing each composite symbol are ordered in ascending numerical
order for uniqueness and looked up in the DCS. If an entry does not exist in the

1 A table is given in the Appendix

The Compiler Compiler 3

DCS for a composite symbol, then it must be appearing for the first time. In this
case it will be allocated the next available serial number (in the range 128–1000)
and an entry will be made in the DCS. Some of the basic symbols available in the
5– hole tape code can only be reproduced as composite symbols on Flexowriters.
The following permanent entries are therefore preloaded into the DCS to ensure
that the composite symbols in question are converted to the correct internal code:

– overprinted with > is given the code for ⟶

> " _ " ≥
0 " / " ϕ
: " = " ≈

If the erase symbol appears in any printing position across a line all other
characters overprinted (or underprinted) by this symbol will be ignored. Also if a
given symbol is overprinted by itself only the first appearance of the symbol will
be noted. The erase symbol will not be put in the unedited list.

The meta–language has been designed so that only the following set of
symbols is essential:

ABCDEFGHIJKLMOPQRSTUVWXYZ 0 1 2 3 4 5 6 7 8 9 =
, . ? () [] $(or £) + – /

However, it will be an advantage if others (such as > ≥ ≡ ≠ ≢ etc.) are available in the set
associated with the input media which is to be used. All the above symbols, except [] and
?, are available in the codes of the three standard Atlas input media; namely; cards, 5–hole
tape and 7–hole tape. In order to allow the meta– language description of a language to be
input through any of the input media, the following punching conventions will be employed:

punch ($ or (£ for [unless available

") "] " "

" $ " ? " "
This will of course impose restrictions on the use of $ (or £) in the metalanguage.
In fact the combination ($ or (£ must be avoided if either cards or 5–hole tape are
to be used, and $ must be identified in phrase identifiers (see later) if cards are to
be used. If any other symbols have to be written in the meta–language which are
not available in the symbol set for the input media being used, they can be
represented by their internal code number enclosed in square brackets. Thus
[13] is equivalent to & (see the Atlas Manual). Obviously this facility would only
be used if the normal input media of the language being defined involves more
symbols than that used to input the meta–language description.

The serial numbers of basic symbols, composite symbols, phrases and
format routines (see later) will be distinct.

4 R.A. Brooker, I.R. MacCallum, D.Morris and J.S. Rohl

PHRASE

The PHRASE statement is used to associate a phrase or group of phrases
with a single phrase identifier 2. The identifiers thus defined may then be written
in other phrases to indicate that any member of the associated group (or class) of
phrases is a permissible substitution. For example writing:

PHRASE [IDENTIFIER 1] = ab, cd
PHRASE [IDENTIFIER 2] = ef [IDENTIFIER 1] g

means that efabg and efcdg are permissible substitutions for [IDENTIFIER 2].

Not all sequences of characters are permitted as identifiers and the symbols
()/*? should not be used (except as described below) neither should] except to
terminate the identifier. An identifier must also contain at least one non–
numerical symbol, and must be distinct from all other identifiers including those
used in the preloaded formats, etc. The symbols * and ? can be used to qualify
any phrase identifier and are always interpreted as follows:

[IDENTIFIER*] = [IDENTIFIER] [IDENTIFIER *], [IDENTIFIER]
[IDENTIFIER?] = [IDENTIFIER], NIL

that is the * qualifier indicates that any arbitrary number of appearances of the
qualified phrase is a permissible substitution and the ? qualifier indicates that
the phrase may or may not appear. A query may he used to qualify a 'starred'
identifier (but not vice–versa) and is interpreted thus:

[IDENTIFIER*?] = [IDENTIFIER*], NIL

The symbol / is used only in format routines where it is necessary to
distinguish (by means of integer labels after the /) different appearances of the
same class of phrase, for example

[TERM/1] and [TERM/2]

might denote two different appearances of the type of phrase associated with
[TERM]. Another device only relevant in format routines is the phrase index. This is
used to refer to a particular member of a sequence of phrases associated with a
'starred' identifier. Thus [IDENTIFIER.*(3)] means the third in the sequence.
Also permitted are the forms [IDENTIFIER*(α1)] and [IDENTIFIER*(β1)] where
α1, and β1, represent the working variables of a format routine (see later).

The order of the individual phrases within a definition is often significant,
because they are always used in a left to right scanning process which attempts
to match the various alternatives to a given source expression. Therefore if any
phrase is a stem of any other phrase the stem must come last otherwise the
longer alternative would never be recognized. It is for this reason that

[I*] is defined as [I] [I*], [I]
and not [I], [I] [I*]

Obvious violations of this rule like that above which can be detected without

referring to other phrase definitions will be monitored (but the definition will still be

2 Another nay of associating an identifier with a phrase or group of phrases is by means of
the built–in phrase statement (see later).

The Compiler Compiler 5

recorded) by the routine which assembles phrase definitions. However, the more
subtle ones as in [I2] below will not.

PHRASE [I1] = ai, ad, ae
PHRASE [I2] = [I1], adf

Correct ordering is also required if one phrase is a special case of some

other phrase in the same definition. The special case must be written first
otherwise source expressions corresponding to the special case would always be
recognized as the more general alternative.

It will have been noticed above that the phrase NIL has special significance
in a phrase definition. One other phrase — BUT NOT — also has special
significance, it is used to exclude specific members of earlier alternatives in a
definition. Thus, writing:

PHRASE [I1] = abc, ade, ace
PHRASE [I2] = g [I1], BUT NOT gade

means that [I2] actually consists of gabc and gace. In general, more than one
phrase may follow a BUT NOT and it qualifies them all.

The BUT NOT facility is implemented by 'looking for' the forbidden
alternatives first in order of preference and if one is found signaling non–
correspondence between the phrase definition and the sequence of symbols under
examination. Thus if any of the permissible alternatives has a stem coincident
with a prohibited phrase it too will be effectively excluded from the permissible
set, for example, given:

PHRASE [A] = ab
PHRASE [B] = [A] g, [A] de, [A]
PHRASE [C] = [B] g, BUT NOT [A]g

then [C] represents only abdeg and not abgg and abdeg as might be expected.
Note also that a NIL alternative cannot be removed by use of the BUT NOT
facility since NIL could be regarded as a stem of every other symbol string.

If an actual phrase starts with the stem BUT NOT which is not to be
interpreted in the above way, then it must be disguised. For example, one could
define the phrase:

PHRASE (CR) [BUT] = BUT

and the stem BUT NOT would then be replaced by [BUT] NOT. The same remarks
apply to NIL but only if it represents the entire last phrase in a definition. That is,
no meta–syntactical significance would be attached to the NIL in:

PHRASE [NOTHING] = NIL, ZERO, NOTHING

or PHRASE [FIBRE] = HEMP, SISAL, MANILLA

Finally, since the function of some phrase definitions is simply to allow for
several ways of saying the same thing, a record of which alternative has occurred
in any particular case may not be required. This may be indicated by using the
symbols (CR) denoting 'contract record', e.g.

PHRASE (CR) [JUMP] = ⟶ , JUMP

6 R.A. Brooker, I.R. MacCallum, D.Morris and J.S. Rohl

FORMAT CLASS

A format class is similar to a phrase definition in that it consists of a set of
alternative phrases (more precisely called formats in this context) represented by an
identifier. However, it is not defined by a single statement like the PHRASE
statement; but by a FORMAT CLASS statement which reserves an identifier for use in
this way, followed by a sequence of FORMAT statements each of which adds (last in
order of preference) a further alternative to the specified format class. Perhaps a
more important difference between a format class and a phrase definition is that the
individual members of the former will be associated (internally) with the serial
numbers of the corresponding format routines whilst those of the latter are
associated only with serially ascending category numbers (1, 2, 3 .. .). A format class
is never regarded as complete and new formats may be added at any time providing
it is before they are used elsewhere. Three format classes always exist, namely:
[SS] the class of source language statements, and [BS] and [AS] two classes of
statements for use only in FORMAT ROUTINES and whose significance will be
explained under that heading. There is another format class associated with the
master phrases, namely [MP], but this does not generally interest the user
except in so far as he must avoid the identifier [MP]. Further format classes may
be introduced by the user if he prefers to define certain groups of statements (or
formats) in this way rather than by phrase definitions. The FORMAT CLASS
statement which reserves an identifier for use in this way has the form:

FORMAT CLASS [ABC]

where [ABC] is the identifier in question.

FORMAT

A format statement consists of the identifier of the format class to which
the format is to be added followed by '=', then by the format itself. For example
the statement

FORMAT [SS] = JUMP [LABEL]

would have the effect of adding the format JUMP [LABEL] to the class of source
statement formats [SS].

The Compiler Compiler 7

PSEUDO–IDENTIFIERS

It is obvious from above that in primary material the symbols , and [play
meta–syntactical roles. Some other means has therefore to be used to indicate
the appearance of these symbols within phrases, formats and other primary
statements. The same applies to the codes associated with: end of line space and
erase which are ignored in all primary material, except routines where end of
line is retained because it is used to separate instructions. The following pseudo–
identifiers are therefore provided:

[,] to indicate ,

[[] " " [

[EOL] " " end of line

[SP] " " space

[ERASE] " " the erase symbol
Thus if a source language statement contains a comma, [,] will be used

to indicate this fact in the format, and if this statement were used as an
instruction in a format routine [,] would still be used, but in actual source
language the symbol , is substituted. Since the comma is so frequently used as a
separator a further pseudo–identifier is provided for use in formats which can be
replaced by ',' when they are used as instructions within format routines. It is
[COMMA] and can only be used in members of format classes [AS] and [BS].

SOME EXAMPLES OF THE USES OF PHRASES AND FORMATS

As an example of the use of phrases definitions and formats in the syntactic
definition of a language consider the following definition of general arithmetic
instructions in MERCURY Autocode. That is, instructions such as:

Z(I–1) = 4.5 JK B3C/ π – A'CJ+C10
B(J+4)/3 PHRASE [±] = +, –

PHRASE [INDEX] =I, J, K, L, M, N, O, P, Q, R, S, T

PHRASE [V–LETTER] = A, B, C, D, E, F, G, H, U, V, W, X, Y,

Z, π

PHRASE [V–LETTER'] = [V–LETTER] ', BUT NOT π' PHRASE
[SUBSCRIPT] = [N], [INDEX], ([INDEX] [±] [N]) PHRASE
[VARIABLE] = [V–LETTER] [SUBSCRIPT], [V–LETTER'],

[V–LETTER]

PHRASE [FACTOR] = [VARIABLE), [K],
[INDEX] PHRASE [DIVISOR] = /[FACTOR]
PHRASE [TERM] = [FACTOR*] [DIVISOR?]
PHRASE [A–EXPR]= [±?] [TERM] [±TERM*?]
FORMAT [SS] = [VARIABLE] = [A–EXPR] [EOL]

The identifiers [N] and [K] represent the class of integer constants and the
class of general constants respectively. They have not been defined above since they
can be more conveniently defined as built–in phrases. This allows the decimal to

8 R.A. Brooker, I.R. MacCallum, D.Morris and J.S. Rohl

binary conversion to be carried out in the recognition phase and the actual
number planted in the analysis record. If it were required to define them
formally the following might be used:

PHRASE [D] = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
PHRASE [N]= [D] [N], [D]
PHRASE[K]=[N] . [N], .[N], [N]., [N]

THE ROLE OF PHRASE DEFINITIONS AND [SS]

The formats in the format class [SS] and definitions associated with the
phrase identifiers they involve are used by the expression recognition routine (ERR)
in order to recognize to which source statement format a given sequence of
characters from the input stream corresponds. At the top level this routine explores
each alternative format in turn attempting to match it to the characters in the input
stream. This process involves scanning the format and the input stream
simultaneously and comparing their respective symbols. Whenever an identifier
appears in the former, the ERR nests all the relevant counts and re–enters itself, this
time to compare each of the alternatives in the specified phrase definition with the
input stream. This recursion proceeds until at some level either the whole of one
particular alternative is matched with the source string or until all the alternatives
are exhausted without correspondence being achieved. In the former case control is
returned to the level above and the next symbol or identifier in the current phrase is
examined. If all the alternatives at a particular level are exhausted without success
then control is again returned to the level above but this time the current
alternative at this level is abandoned and the next one is explored. A record referred
to as the analysis record is produced during this process which indicates which
alternative phrase (i.e. its category number) was recognized at each level. When an
instruction is eventually identified its analysis record is handed on to the associated
format routine.

At each level it is the first alternative to match the source string which is
accepted, no further alternatives at that level will be considered even though
subsequent symbols or identifiers at the level above fail to match. It is
interesting to note that because of this, for example, the standard method of
writing the function digits of an Atlas instruction (namely, a binary digit
followed by three octal digits or just three octal digits in which case zero is
assumed for the binary digit) would have to be defined as
[FD] = [BD] [OD] [OD] [OD] , [OD] [OD] [OD]

(where [BD] = 0 , 1 and [OD] = 0, 1, 2, 3, 4, 5, 6, 7)

and not as

[FD] = [BD?] [OD] [OD] [OD]

The second definition will fail when the three octal digit form is used if the
first is either an 0 or 1. In this case the 0 or 1 would be associated with [BD?]
instead of the first [OD]. In the first alternative of the first definition the same
thing would happen but when the third [OD] is not recognized the next
alternative will be taken.

The Compiler Compiler 9

PRE–EDITING

A pre–editing routine (R142) exists in the compiler compiler. This routine is
called each time a line of source program is reconstructed to edit the line before it is
analysed. It removes all space and erases symbols from the line. The user may
replace this routine by one to edit the source program in any other way he chooses.
On entry to the routine B62 is the address of a circular list (see later) containing the
reconstructed line. The routine must generate a new list containing the edited line
and set B61 to its address. The original list must not be changed in any way.

FORMAT ROUTINE

To each member of a format class corresponds a format routine. This
describes the meaning of the format or more precisely the action to be taken
when an instruction of that form appears in a source program (or is to be
interpreted in another format routine). For statements of an imperative nature
the action will be to add the equivalent set of machine instructions to the target
program; but in the case of declaratives, for example instructions defining store
mapping strategy, the action will be to enter certain information in lists for
reference by subsequent format routines.

The first line of each routine contains the routine heading. This indicates
the format and format class with which the routine is associated. Its syntax may
be described thus:

[format class] [EQV] [the format in question]

where [EQV] is defined in the appendix. The format routine associated with
[VARIABLE] = [A–EXPR] [EOL] for example would start

ROUTINE[SS] ≡ [VARIABLE] = [A–EXPR] [EOL]

The identifiers appearing in a routine heading, which in a format serve only to
define syntax, are in a routine regarded as names referring to the principal
expressions which comprise the format. That is, when an entry to a format routine is
caused by the appearance of a particular instruction (i.e. one containing only basic
symbols and not identifiers) of the form whose meaning the routine defines, the
identifiers in the heading will be associated with the particular forms of phrase
which have been substituted for them in the instruction. These identifiers may
appear in the instructions of the routine, and the expressions associated with them
will be substituted before each instruction is interpreted. The format written in the
routine heading should generally be a copy of that written in the FORMAT statement.
If however, the format contains identifiers defined as contract record (CR) phrases
these identifiers must not appear in the routine heading; Instead particular forms
of these phrases should be substituted.

Each instruction in a format routine may be from either the format class [BS]
in which case it is called a basic statement (or built–in instruction), or from the
format classes [AS] and [SS] and called a sub–statement. Basic statements are
interpreted by conventional routines (i.e. routines containing only machine orders)
built in to the system, whereas sub–statements are interpreted by their associate
format routines. The built–in routines are constructed so as to use only a reserved
set of B–lines and other machine registers, and the routine changing sequence takes
advantage of this in bypassing some of the protective nesting of work space, etc.,

10 R.A. Brooker, I.R. MacCallum, D.Morris and J.S. Rohl

which is normally carried out. The difference between members of [SS] and
[AS] is that those of the former may appear both in source language and in
format routines but the latter (i.e.. auxiliary statements) can only appear in
format routines. The instructions of a format routine break up the definition of
the format into convenient logical steps. Auxiliary statements are introduced by
the user to effect those operations for which no built–in or source statement
exist. In MERCURY Autocode, for example the format

[VARIABLE] = [A–EXPR] [EOL]

might be defined by the format routine

ROUTINE [SS] [VARIABLE] = [A–EXPR] [EOL]
ACC = [A–EXPR] [VARIABLE] = ACC
END

The meanings of the auxiliary statements ACC = [A–EXPR] and [VARIABLE]
= ACC (i.e. to compile orders to compute the [A–EXPR] in the accumulator, and
to transfer the contents of the accumulator to the store register associated with
the [VARIABLE], respectively) will themselves be defined in terms of simpler
auxiliary statements and/or basic statements and so on, until at the bottom level
only basic statements will be used.

Any member of [BS], [AS] or [SS] used in a format routine may be a
completely particular instruction (i.e. one consisting entirely of basic, or composite,
symbols) or it may contain parameters, that is identifiers for which particular
phrases are to be substituted (thus particularizing the instruction) each time it is
obeyed. The instructions of a format routine should be separated by a comma or any
number of newline codes, even in the case of formats which do not terminate with
the phrase [SEP] (see Appendix). If an instruction overflows one line, continuation
on the next line is indicated by starting that line with a solidus (/).

The syntax of the basic statements and some preloaded auxiliary
statements is defined in the Appendix. Their meaning is described below.

BUILT–IN INSTRUCTIONS
Basic listing instructions

These instructions are provided for manipulating 24–bit words and compiling lists of
such words, for example the target program. Associated with them is a central group of 24–
bit registers denoted by β1, β2, β3 (or B1, B2, B3) . Also there is a further set of 24–bit
registers α1, α2 α3 (or A1, A2 A3) local to each routine. Neither can be regarded as a field
and referred to as αi or βi. The β–registers will be associated with 'B–lines' and only β1, ⟶
β40 are available to the user. In the case of the αs there is no practical limit but a block of
24–bit registers, whose size is determined by the highest α subscript appearing in a routine,
is reserved in the main working area whenever that routine is in use.

In the words which the basic listing instructions manipulate, and these may
be either the [αβ] registers themselves or store registers whose addresses are

The Compiler Compiler 11

contained in the [αβ] registers, a binary point is always assumed before the last
two digits thus:

XX X.XX

22 bits 2 bits
most significant end

for example unity is represented by the word
00 0100

24 bits

This is the most natural placing of the binary point in words which are used
as 24–bit store line addresses, since adding one in the above scale will advance
an address by one 24–bit line. When decimal integers are written in basic listing
instructions they are converted to 24–bit numbers scaled as above and with their
bottom two bits zero. The bottom two bits can be written into by using a
substitution for [WORD] (see Appendix) which involves [0–3]. For example, 4.01
would be represented by the 24 bits 0 ... 010001. If a particular pattern of binary
digits is required, say for use as a mask, the [OW] (octal word) form of [WORD]
may be the most convenient. For example:

111111111111000000000000

may be written *77770000 or just *7777 since zeros at the least significant end
may be dropped.

The instructions available for manipulating words are the following:
(1) [AB] = [WORD] [SEP]
All arithmetic associated with [WORD]s is performed modulo 221.

The effect of this instruction is to compute the value of the [WORD] and

place the result in the specified [AB]. An example is
α1=β3+4

whose effect would be to replace the number in register α1, by the result of
adding 4 to the number in β3. The second alternative form of [WORD] namely
([ADDR]) requires further explanation. When the quantity [ADDR] is enclosed
in parentheses it is interpreted as meaning the content of the store line whose
address is given by [ADDR]. Thus:

β3=α3+4
means replace the content of β3 by the result of adding 4 to the number in the
store line whose address is given by the content of α3. The significance of the
operator '(+)' (see definition of [ADDR]) will be described later.

(2) [AB] = [WORD] [OPERATOR] [WORD] [SEP]

This instruction is similar to (1) but permits a more complex R.H.S. For
example:

α3=β4–(α3+4)
which means replace the content of α3 by the result of subtracting from the
content of β4 the number in store line α3 + 4. It should be noted with this type of

12 R.A. Brooker, I.R. MacCallum, D.Morris and J.S. Rohl

instruction that the two [WORD]s are computed before the [OPERATOR] is
applied thus :

β3

=4×β1

– 1

is interpreted as
β3

={4}

×

{ β1

– 1 }

1st [WORD]

2nd [WORD]

and not as might be expected from the usual precedence rules of algebra, and
parentheses cannot be used to alter the meaning thus,

β3=(4×β1)–1.
(3) ([ADDR]) = [WORD] [SEP]

and (4) ([ADDR]) = [WORD] [OPERATOR] [WORD] [SEP]

In these two instructions the R.H.S. is calculated as above. The result

however is placed in the store register whose address is contained in a specified
[ADDR]. For example:

(α1) = (β4) × (α2)

replaces the content of the store register whose address is contained in , by the
product of the numbers in the store registers whose addresses are specified by β4
and α2.

(5) PLANT [FD] [COMMA] [ABN] [COMMA] [ABN] [COMMA] [WORD] IN
[B] [SEP

]

This instruction is provided for compiling Atlas machine instructions. The
[B] in question is taken as the address of the first of a pair of 24–bit registers
where this instruction is to be compiled, and it is advanced by 2 in the process.
The instruction compiled is that produced by replacing the three words by their
values. When this instruction is used to compile object program, β1 should be
substituted for [B] since β1 is always preset to the address of the area where the
object program is to be compiled.

(6) [FD] [COMMA] [WORD] [COMMA] [WORD] [COMMA] [WORD] [SEP]

This represents a basic machine order to be executed (i.e. interpreted) at the
point where it appears in the format routine. It is provided as an 'escape' for
those situations in which the basic listing instructions are inadequate.
Control transfers

For the purpose of control transfers a floating address system is used and
any instruction within a format routine can be preceded by an integer label, e.g.

3) β3 =4×α5

There is no practical limit to the number of labels which can be used but a
label directory will be recorded with each routine whose size will be determined
by the highest label number which appears in the routine. Built–in instructions
are provided which effect both conditional and unconditional transfers of control
to labelled instructions.

(1) [JUMP] [LABEL] [SEP]

An example of the unconditional jump instruction is

The Compiler Compiler 13
⟶	3

This would have the effect of transferring control to the instruction labelled 3 within the same format routine. An α or β would
also be a permissible substitution for the identifier [LABEL] but parameters as in ⟶ [N/1] are not. The two instructions
α = [N/1], ⟶ α1 should be used instead of ⟶ [N/1]. The reason for this is that the
phrase [LABEL] is built–in and parameters cannot be substituted into built–in phrases. It has
been made a built–in phrase so that its analysis record can be made to contain a reference to the
format routine in which it appears. This means that further jump orders, say GO TO [LABEL],
could be introduced as auxiliary statements, then in the associated format routine, namely:

ROUTINE. [AS] ≡ GO TO [LABEL] [SEP]
⟶ [LABEL]	

	

END	

when the parameter [LABEL] is substituted into the built–in instruction [JUMP]
[LABEL] it will contain the necessary information to enable control to be
transferred back to the specified label of the routine in which the expression
represented by [LABEL] was first written.

Consider for example a routine in which the instruction GO TO 3 appears.

ROUTINE ROUTINE FOR GO TO BUILT–IN ROUTINE FOR

ABC [LABEL] [SEP] [JUMP] [LABEL] [SEP]

…… …………………….

……
⟶	[LABEL] …………………….

…… …………………….

…… …………………….

GOTO3 …………………….

…… …………………….

3) …… …………………….

…… …………………….

When this instruction is reached control is transferred to the GO TO [LABEL]

routine as shown, which at the ⟶ [LABEL] instruction further transfers control down to
the built–in routine for [JUMP] [LABEL], which has finally to transfer control back to
label 3 in the routine ABC. Thus the analysis record of [LABEL] which is carried forward
in the process must contain the label number 3 and a reference to the routine ABC.

(2) [JUMP] [LABEL] [IU] [WORD] [COMPARATOR] [WORD] [SEP]

In this instruction the values of the two [WORD]s are computed and the
predicate [WORD] [COMPARATOR] [WORD] is evaluated. If this is true, when the
phrase [IU] takes the form IF, [JUMP] [LABEL] will be executed, otherwise
control passes to the next instruction of the routine. The UNLESS form of [IU]
reverses this procedure. Because the arithmetic is carried out modulo 221 this test

14 R.A. Brooker, I.R. MacCallum, D.Morris and J.S. Rohl

may go wrong if: (1) the two [WORD]s differ in sign, and (2) the sum of their
moduli is out of range (i.e. negative modulo 221).

(3) CALL R [ABN] [SEP]

This instruction transfers control to the first instruction of the routine
whose 'serial number' is given by [ABN]. A link is nested and control will return
to the next instruction when an END is encountered in the new routine. Almost
any routine which has been built into the system can be used in this way and
their specifications will be published elsewhere. Other routines of this type
(referred to as system routines) can be introduced by the user through the format
routine mechanism. The only difference is that the heading:

[format class] [EQV] [the format in question]

is replaced by

R [N]

where the [N] is the serial number to be associated with the routine which follows. Any of the instructions
which are allowed in format routines can be used in system routines but it is unlikely that they will contain
parameters (i.e. phrase identifiers). It is a convention that β61 ⟶ β69 are used as the parameters (in the
conventional sense) of system routines and basic listing instructions can be used to operate on this group of
βs. Serial numbers 1000 ⟶ 1023 are reserved for additional system routines which a user may require.

(4) CALL R [PI] [SEP]

The identifier [PI] can in general be replaced by any phrase identifier but
in the above instruction only a format class identifier is allowed. Its function is to
transfer control to the format routine associated with the particular format
which the format class identifier represents, and thus to interpret this format.
(See also '[ABN] = CATEGORY OF [PI]' below.)

(5) END [SEP]

This instruction should be written at the end of every logical path through a
routine. It causes control to return to the previous routine.

(6) [FD] [COMMA] [WORD] [COMMA] 0 [COMMA] L [LABEL] [SEP]

The [LABEL] in the address part of this instruction is interpreted as a label
number in the usual way and when the instruction is obeyed its address part is
replaced by the associated control number. Although any function code can be
substituted for [FD] only those which represent control transfers will be sensible. It
is provided mainly so that conditional accumulator testing instructions can be
employed in routines which manipulate floating point numbers.

The Compiler Compiler 15

Parameter testing resolving, etc.

Sometimes the meaning of one source statement can be expressed as a
sequence of less complex statements (or suitably chosen auxiliary statements)
whose parameters are the principal expressions of the first statement. See for
example the format routine for [VARIABLE] = [A–EXPR] [SEP] which was
given earlier. In many cases however it is the sub–expressions associated with
the parameters of a routine heading which are to be substituted into the sub–
statements or basic statements of the routine. Some basic statements are
therefore required to resolve expressions into the sub–expressions consistent
with their known structure. Also if an expression can have several alternative
forms it is necessary to have basic statements to discriminate between them and
to switch control to different sequences of instructions. It is also necessary to be
able to construct new expressions from existing ones.

The formats of the basic statements for carrying out these and other
parametric operations contain the identifiers [PI], [RESOLVED–P] and
[GENERATED–P]. The identifier [PI] represents the class of phrase identifiers and
can be replaced by an ordinary identifier (e.g. [TERM], [FACTOR*]), or a labelled
identifier (e.g. [TERM/1], [TERM/2], [FACTOR*/1]), or in the case of 'starred'
identifiers, a phrase index may also be employed (e.g. [FACTOR*/1 (α1)], [±
TERM*(1)], [±TERM*(β3)]). It can also appear as a parameter in its own right
(e.g. [PI], [PI/1]) but we will consider the implications of this later. The phrase
index is a device by means of which a particular sub–expression in the sequence of
sub–expressions associated with a 'starred' identifier can be referred to. It is the only
case in which a sub–expression of an expression on hand can be referred to without
the expression being formally resolved. The required sub–expression is specified
either directly by means of an integer or indirectly by means of an α or β, and for
this purpose the sub–expressions are considered to be numbered consecutively from
the left starting at 1. For example if a particular [±TERM*] is +ABC – DEF, then
[±TERM*(1)] will represent +ABC and [±TERM*(2)] will represent –[DEF]. Also if
α1, = 2, then [±TERM(α1)] will represent –DEF. In any format a 'starred'
identifier with an index is a permissible substitution for the same identifier without
the star, except within a [RESOLVED– P] and some appearances of [PI] in which
it is specifically forbidden (see below).

The identifiers [RESOLVED–P] and [GENERATED–P] cannot exist on their own
and are always related to the [PI] which precedes them in the same format Any
substitution made for them must be a phrase of a form which ism associated with
the identifier which replaces the [PI]. For example if the [PI] was replaced by
[±TERM] then [RESOLVED–P] or [GENERATED–P] might be replaced by phrases
such as [±TERM] or [±] [TERM] or [±] [FACTOR*] [DIVISOR?]. They do not
have formal phrase definitions but they might be regarded as being defined thus

[RESOLVED–P] = [P]
[GENERATED–P] = [P]

where the [P] is dynamically replaced by whatever identifier occurs in place of
the preceding [PI]. This does not apply if the preceding [PI] is replaced by its
own parametric form (say [PI/1]) and in this case the [P] would remain unset.

16

R.A. Brooker, I.R. MacCallum, D.Morris and J.S. Rohl

Therefore,

only

parametric

[RESOLVED–P]s

and

[GENERATED–P]s

(e.g.

[RESOLVED–P/1]) can be used if the preceding [PI] is itself parametric. The
implications of this will be considered later, and the other properties of
[RESOLVED–P] and [GENERATED–P] will be apparent from the descriptions of
the formats in which they appear.

(1) LET [PI] [EQV] [RESOLVED–P] [SEP]

The function of this instruction is to match a given expression on hand, whose
identifier is substituted for [PI], to the phrase substituted for [RESOLVED–P]. This
last phrase need not be completely particular and any identifiers it contains will
thereafter be associated with the corresponding sub–expressions of the [PI]. It
must not however contain identifiers with phrase indices. An example is

LET [±TERM*/1] ≡ [±TERM] [±TERM*/2]

which would associate the first term of [±TERM/1] with [±TERM] and the rest with
[±TERM*/2]. The form of an R.H.S. phrase is not restricted to that which is written
in the phrase definitions for the L.H.S. identifier, since further substitutions can be
made for the identifiers in the R.H.S. All the substitutions which are made must be
consistent with foregoing phrase definitions, and whenever a choice of alternatives is
made it must be consistent with the form of the [PI] expression which it is known
will occur in practice. Thus the above instruction would only be sensible if it had
been previously established that [±TERM*/1] was associated with more than one
signed term. Without making further assumptions about the nature of [±TERM*/1]
it could not be expanded beyond

LET [±TERM/1] ≡ [±] [FACTOR*] [DIVISOR?] [TERM*/2]

Since identifiers can be re–used dynamically as in conventional languages,
an instruction such as

LET [± TERM* (α1)] ≡ [±] [TERM]
could be used in a loop of instructions in which α1 varied between 1 and the
maximum number of [±TERM]s in [±TERM*]. At each pass through this instruction
the two relevant sub–expressions of the α1th [±TERM] would be associated with [±]
and [TERM].

(2) [JUMP] [LABEL.] [IU] [PI] [EQV] [RESOLVED–P] [SEP]

This instruction is used in those situations where an expression may have
more than one form. If the expression has the form substituted for [RESOLVED–
P] then the instruction will have the same effect as LET [PI] [EQV]
[RESOLVED– P], after which control will be transferred to the specified
instruction if [IU] takes the form IF, or the next instruction in the case of
UNLESS. If the expression corresponding to the [PI] does not match
[RESOLVED–P] control will be switched in the reverse fashion to the above and
no new sub–expressions will result. For example consider the instruction:

⟶ 2 IF [±TERM] ≡ [±TERM] [±TERM*]	
Now if [±TERM*] initially represents more than one signed term this

instruction will associate [±TERM] with the first and re–associate [±TERM] with
the rest, then transfer control to the instruction labelled 2. Otherwise [±TERM*]

The Compiler Compiler 17

must represent only one signed term and this could be referred to in succeeding
instructions as [±TERM*(1)] or it could be formally resolved thus:

LET [±TERM*] ≡ [±TERM]
but it must not be referred to as [±TERM] without first being formally resolved.

(3) LET [PI] = [GENERATED–P] [SEP]

In this instruction the identifier substituted for [PI] is one with which a
new expression is to be associated, and it must not involve a phrase index. The
expression in question is that substituted for [GENERATED–P] and must be of a
form which can be derived from the phrase definitions of the preceding identifier
and any other identifiers which this involves. It may be a completely particular
expression thus:

LET [± TERM*] =+ abc/e – gh
or it may contain parameters, e.g.

LET [±TERM*] = [± TERM*(2)] [± TERM*(1)]

which would associate [±TERM*] with a new expression consisting of its
previous first two signed terms in reverse order.

(4) [JUMP] [LABEL] [IU] [PI] = [PI] [SEP]

This instruction compares the analysis records for two expressions of like
kind. These will only be 'equal' if the expressions look identical (except for sub–
expressions replacing phrases with contracted out analysis records which can be
ignored). In this sense bac/e is not equal to abc/e.

(5) [AB] = NUMBER OF [PI] [SEP]

Only 'starred' identifiers can be substituted into the R.H.S. of this
instruction. Its function is to set [AB] equal to the number of expressions in the
repeated sequence. Thus, if [± TERM] represents four signed terms,

α1 = NUMBER OF [±
TERM] would be equivalent to α1 = 4.

(6) [AB] = CATEGORY OF [PI] [SEP]

This instruction examines the expression associated with the identifier
which is substituted for [PI] and determines to which alternative form in the
phrase definition of that identifier the expression corresponds. For example, if
[±TERM] were associated with a single signed term:

α1 = CATEGORY OF [±TERM*]
would set α1 = 2, since [± TERM*] is defined as [± TERM] [± TERM*], [±
TERM].

Whereas in a format class the meaning of each alternative is defined by a
routine and the category numbers of the alternatives are the serial numbers of
the routines in question, meanings are very often assigned to the alternatives of
a phrase definition by using the multi–way switch

α1 = CATEGORY OF [PI]
⟶ α1	

18 R.A. Brooker, I.R. MacCallum, D.Morris and J.S. Rohl

The meanings of the various alternatives would then be coded at the points labelled
l), 2), 3), etc. It is when the number of alternatives is large that the format class
becomes more convenient and in this case the multi-way switch is replaced by

CALL R [PI]

and the meaning of each alternative would then be defined in a separate format
routine.

The identifiers [PI], [RESOLVED–P] and [GENERATED–P] can be used as
parameters in the usual way. Thus additional parameter manipulating
instructions can be introduced as auxiliary statements. However if a
[RESOLVED–P] or a [GENERATED–P] is used in a format it must be associated
with a preceding [PI], for reasons given earlier. Because the identifier
substituted for [PI] in any particular example of such an auxiliary statement
will be local to the routine in which it appears, the analysis record for [PI] will
contain, in addition to the identifier substituted for it, a reference to the routine
in which it appears. Thus when a parameter such as [PI] is handed down to a
format routine associated with an auxiliary statement for manipulating
parameters, it can be substituted into a built– in instruction and the 'action' will
take place in the routine in which the auxiliary statement was a sub–statement.

One use of this facility might be to represent an existing instruction by a
different format thus:

FORMAT [AS] = RESOLVE [PI] INTO [RESOLVED–P] [SEP]
ROUTINE [AS] ≡ RESOLVE [PI] INTO [RESOLVED–P] [SEP]

LET [PI] ≡ [RESOLVED–P]
END

A further use would be to define extensions to the existing group of instructions
such as the following instructions for testing if an expression has one of two
alternative forms.

FORMAT [AS] = [JUMP] [LABEL] [IU] [PI] ≡ [RESOLVED–P] [COMMA]
[RESOLVED–P] [SEP]

ROUTINE [AS] ≡ [JUMP] [LABEL] [IU] [PI] ≡ [RESOLVED–P/1]
/ [COMMA] [RESOLVED–P/2] [SEP]

⟶ 1 IF [PI] ≡ [RESOLVED–P/1]		
⟶ 1 IF [PI] ≡ [RESOLVED–P/2]		
⟶ [LABEL] IF [IU] ≡UNLESS	
END

1) ⟶	[LABEL] IF [IU] ≡ IF

END

A particular example of the use of this instruction might be:

⟶	3 UNLESS [VARIABLE] ≡ [V–LETTER] [N] , [V–LETTER] [INDEX]

The Compiler Compiler 19

If the [VARIABLE] in question had either of the two specified forms then its
first sub–expression would henceforth be associated with the identifier [V–
LETTER], and its second would be associated with either [N] or [INDEX].

The remaining three instructions of this section are provided mainly for
operating on expressions associated with parametric [PI]s in which case the
associated 'action' takes place in the routines in which the expressions occur.
They may also be used with particular identifiers substituted for the [PI]s and
in this case the 'action' will take place in the same routine.

(7) [AB] = CLASS OF [PI] [SEP]

The function of this instruction is to determine the internal 'serial number'
(see TREES and ROUTINES) of the class of phrase whose identifier replaces
[PI]. If the parameter [PI] or [PI/1], etc., is used the instruction will
determine the serial number of the identifier associated with this parameter.

(8) [AB] = ADDRESS OF [PI] [SEP]

This instruction sets the [AB] in question to the address of the analysis
record associated with the identifier which replaces [PI]. If a parametric [PI]
is substituted the address of the analysis record associated with the identifier
which the parametric [PI] represents will be obtained.

(9) [PI] = [AB] [SEP]

This instruction is for carrying out the reverse operation to (8). That is the
identifier substituted for [PI] is henceforth associated with the analysis record
whose address is given by [AB]. No attempt is made to check that this is a valid
analysis record. The identifier substituted for [PI] in this instruction must not
involve a phrase index.

SOME EXAMPLES OF FORMAT ROUTINES

The routines which define the meanings of the previously introduced auxiliary
formats ACC = [A–EXPR] [SEP] and [VARIABLE] = ACC [SEP] and other
auxiliary formats used in the process are given below. In practice the same meaning
can usually be defined in several different ways and some variations in
programming style will be evident in the routines given (for example two different
techniques are illustrated for dealing with 'starred' sequences). It is not possible to
formulate precise rules for determining the most efficient style, but one which
results in the least number of instructions (either from [BS], [AS] or [SS]) being
executed during the translation of any particular source statement should be near
the optimum. In general basic statements without parameters will take the shortest
time ; basic statements with parameters will take several (perhaps 10 ⟶ 20) times
longer; and other parametric statement will take a comparable time to the latter
plus the times for the individual 'instructions' in the associated format routines.
More precise information can be derived from the description of the mechanics of the
system given in 'TREES and ROUTINES'.

The phrase definitions given earlier will be assumed in what follows and
only the required additional ones given.

20 R.A. Brooker, I.R. MacCallum, D.Morris and J.S. Rohl

Ambiguities

The order in which formats are introduced is generally significant, because
they are scanned in this order and the instruction on hand is accepted as an
example of the first format with which it matches: The problems which arise are
similar to those involved in ordering the alternatives in a phrase definition. Thus
ACC = [± ?] [FACTOR] [SEP] precedes ACC = [± ?] [TERM] [SEP], for
since the former is obviously a special case of the latter, it would never be
recognized if they were introduced in the reverse order. For example, in one of
the routines which follows, namely :

ROUTINE [AS] ≡ ACC = [± ?] [TERM] [SEP]
LET [TERM] ≡ [FACTOR*] [DIVISOR?]
…
…
ACC = [± ?] [FACTOR*(1)]
…
…

the sub–statement ACC = [± ?] [FACTOR*(1)] would be recognized as is
parametric form of ACC = [± ?] [TERM] [SEP] and processed accordingly.
When the routine came to be used in translating source material, this instruction
would cause the routine ACC = [± ?] [TERM] [SEP] to re–enter itself. This is
not, however, recursion; but merely a tight cycle where [TERM] is endlessly
resolved into the same factor. Note also that the phrase [SEP] is essential in
order to avoid another kind of ambiguity which is as follows.

If the formats were introduced in the correct order but without the phrase
[SEP], then a sub–statement such as ACC = π[FACTOR] / 180, appearing in a
routine would not be recognized as a form as ACC = [± ?] [TERM]; instead ACC
= π. would be recognized as a form of ACC = [± ?] [FACTOR]. An attempt
would then be made to recognize [FACTOR] / 180 (and what followed it) as some
other format, and in general the machine would not recognize this and would stop.
With the [SEP] added, however, recognition is not completed until either a comma
or a new–line symbol is encountered. Thus in the above, the format ACC = [±?]
[FACTOR] [SEP] would be rejected and others attempted until ACC = [±?]
[TERM] [SEP] was encountered. The use of the phrase [SEP] eliminates all
'ambiguities of stems' as the above in reality are, and it is therefore recommended
that all [AS] formats be terminated in this manner. In case there exist ambiguities
between any of the basic listing instructions and any [AS] or [SS] formats which
the user has introduced, then the latter classes of instruction may be distinguished
by writing an asterisk in front of them. Formally, then, an instruction is defined as:

[BS], [ASTERISK ?] [AS], [ASTERISK ?] [SS]

and this is the order of preference used to identify instructions in a format routine.

There is no means of resolving ambiguities between members of [AS] and
[SS] but since the formats of [AS] are chosen by the user, judicious choice
should eliminate all these.

The Compiler Compiler 21

Apart from these considerations formats (and phrases) can be defined in
any order providing they are always defined before they appear explicitly in
format routines.

In the examples below the instructions of the form PLANT [FD], [WORD],
[WORD], [WORD] IN [AB] are not written correctly. Instead of [FD] a
symbolic description of the required operation is used.

FORMAT [AS] = ACC = ACC + DUMP [SEP]
FORMAT [AS] = ACC = [± ?] [FACTOR] [SEP]
FORMAT [AS] = ACC = [± ?] [TERM] [SEP]
FORMAT [AS] = ACC = ACC [OP] [FACTOR] [SEP]
FORMAT [AS] = ACC = ACC [±] [TERM] [SEP]
FORMAT [AS] = ACC = [A–EXPR] [SEP]
FORMAT [AS] = DUMP ACC [SEP]

FORMAT [AS] = [AB] = ADDRESS OF [K] IN NUMBER LIST [SEP]
FORMAT [AS] = [AB] [COMMA][AB] = ADDRESS AND MODIFIER OF

[VARIABLE] [SEP]
PHRASE [OP] = ×, /, [±]

ROUTINE [AS] ≡ ACC = [A–EXPR] [SEP]

LET [A–EXPR] ≡ [± ?] [TERM] [±
TERM*?] ACC = [± ?] [TERM]
⟶	1 UNLESS [± TERM*?]	≡	[± TERM*]

3) ⟶	2 UNLESS [± TERM*]	≡	[±] [TERM] [± TERM*]	ACC = ACC [±] [TERM]
⟶3

2) LET [± TERM*] ≡ [±] [TERM]
ACC = ACC [±] [TERM]

1) END

ROUTINE [AS] ≡ ACC = [± ?] [TERM] [SEP]
LET [TERM] ≡ [FACTOR*] [DIVISOR?]
α1 = NUMBER OF [FACTOR*]

α2= 1
ACC = [± ?] [FACTOR*(1)]
⟶	1

2) α2=α2+1
ACC = ACC × [FACTOR*(α2)]

1) ⟶	2 UNLESS		α2	=	α1
⟶	3 UNLESS [DIVISOR?]	≡ /	[FACTOR]

3) END

22 R.A. Brooker, I.R. MacCallum, D.Morris and J.S. Rohl

ROUTINE [AS] ≡ ACC = ACC [±] [TERM] [SEP] ⟶1 UNLESS [TERM]	≡	[FACTOR]
ACC = ACC [±] [FACTOR]
END

1) DUMP ACC
ACC = [±] [TERM]
ACC = ACC +
DUMP END

The above routine illustrates the use of a parameter testing instruction in order
to recognize a special case for which a more optimum translation can be provided
than that which would otherwise result. A price which is paid for this, however,
is an increase in compiler time and in the space occupied by the compiler. In
general, some sort of compromise must be reached.

ROUTINE [AS] ≡ ACC = [±?] [FACTOR]
[SEP] α1 = CATEGORY OF [FACTOR]
⟶	α1

1) LET [FACTOR] ≡ [VARIABLE]
α2, α3 = ADDRESS AND MODIFIER OF [VARIABLE]

5) ⟶	6 UNLESS [±?] ≡ –
PLANT (A = –S), 0, α3, α2 IN β1
END

6) PLANT (A = S), 0, α3, α2 IN β1
END

2) LET [FACTOR] ≡ [K]
α2 = ADDRESS OF [K] IN NUMBER
LIST α3=0
⟶ 5	

	

3) LET [FACTOR] ≡ [INDEX]
α2 = CATEGORY OF [INDEX]
⟶ 7 UNLESS [±?] ≡ –	

7) PLANT (A = n), 0, α2, 0, IN β1
END

In the above routine it is assumed that B–registers 1–12 are to contain the
numbers associated with the index letters i to t. Decisions of this kind, relating to
the mapping of the object program and its working space into the computer store,
are generally made before the compiler is started.

ROUTINE [AS] ≡ ACC = ACC [OP] [FACTOR] [SEP]

The Compiler Compiler 23

α1=4
⟶ 1IF[OP]≡–	

α1 = CATEGORY OF [OP]

1) α2 = CATEGORY OF [FACTOR]
α2 = α2+1
⟶	α2

2) LET [FACTOR] ≡ [VARIABLE]
α3, α4 = ADDRESS AND MODIFIER OF [VARIABLE]

14) α1 =α1 + 5
⟶ α1	

6) PLANT (A = A × S), 0, α4, α3 IN β1 , END
7) PLANT (A = A / S), 0, α4, α3 IN β1, END
8) PLANT (A = A + S), 0, α4, α3 IN β1, END
9) PLANT (A = A – S), 0, α4, α3 IN β1, END
3) LET [FACTOR] = [K]

α3 = ADDRESS OF [K] IN NUMBER
LIST α4=0
⟶ 14	

	

4) LET [FACTOR] = [INDEX]
α3 = CATEGORY OF
[INDEX] α1=α1+9
⟶ α1	

10) PLANT (A = A × n), 0, α3, 0 IN β1 , END
11) PLANT (A = A / n), 0, α3, 0 IN β1 , END
12) PLANT (A = A + n), 0, α3, 0 IN β1 , END
13) PLANT (A = A – n), 0, α3, 0 IN β1 , END

Before the routines for the remaining auxiliary formats can be written we
must make some assumptions about the way the computer store is to be
allocated to variables and constants. Therefore, let us assume that at the
beginning of each MERCURY Autocode source program a routine is entered
which sets the following βs

β2 = the address of the first twenty–nine 48–bit registers to be used for the
variables A', B', ..., Z', A, B, ... Z, π respectively.

β3 = the address of the first fifteen 24–bit registers to be used as the
variable directory of each chapter.

Let us also assume that the variable directory will be cleared at the beginning of each chapter
(i.e. by the format routine associated with the format CHAPTER [N]). However, a copy of the
variable directory associated with each chapter must be retained elsewhere in order to translate
VARIABLES [N]. The entries are made in the variable directory when directives such as A ⟶ 10
are encountered. The first register in the directory will be associated with 'A', the second with 'B'
and so on, and

24 R.A. Brooker, I.R. MacCallum, D.Morris and J.S. Rohl

the entry made for each will be the base address of the vector in question (i.e.
A0, B0, etc.).

β4 = the address of the first register in an area reserved for constants and
miscellaneous working. The that of these will be used as the
accumulator dump and β5 will contain twice the number of constants
in the rest of the list (initially zero).

ROUTINE [AS] == [AB] = ADDRESS OF [K] IN NUMBER LIST
[SEP] α1 = ADRESS OF [K]
β5=β5+2

α2=β5+β4
(α2) = (α1 + 1)
(α2+1)=(α1+2)

[AB] = α2
END

This routine presupposes that the analysis record of [K] consists of three words,
B2 X X, where the Xs are the two halves of the floating–point number in
question, an explanation of B2, can be found in TREES AND ROUTINES. One
way this routine might be improved is by writing a sequence of machine orders to
test if the number in question is already in the list, and using this as its address
instead of adding it.

ROUTINE [AS] ≡ DUMP ACC [SEP]
PLANT (A ⟶ S), 0, 0, β4 IN β1
END

ROUTINE [AS] ≡ ACC = ACC + DUMP [SEP]

PLANT (A = A + S), 0, 0, β4 IN β1
END

ROUTINE [AS] ≡ [AB/1] [COMMA [AB/2] = ADDRESS AND MODIFIER

/ OF [VARIABLE] [SEP]
[AB/2] = 0
α1 = CATEGORY OF [VARIABLE]
⟶ α1	

	

1) LET [VARIABLE.] == [V–LETTER]
[SUBSCRIPT] α1 = CATEGORY OF [V–LETTER]
α1=α1–1 [AB/1] = (α1 +
β3) ⟶4	IF [AB/1] ≠ 0
MONITOR (VARIABLE [SP] NOT [SP] SET)

4) α2 = CATEGORY OF [SUBSCRIPT]
α2=α2+4
⟶ α2		

5) LET [SUBSCRIPT] ≡ [N]

The Compiler Compiler 25

[AB/1] = [AB/1] + [N]
END

6) LET [SUBSCRIPT] ≡ [INDEX]
8) [AB/2] = CATEGORY OF [INDEX]

END
7) LET [SUBSCRIPT] ≡ ([INDEX] [±] [N])

[AB/1] = [AB/1] [±] [N]
⟶	8

2) LET [VARIABLE] ≡ [V-LETTER]
α1 = CATEGORY OF [V-LETTER]
[AB/1] = α1 + β2 – 1
END

3) LET [VARIABLE] ≡ [V-LETTER]
α1 = CATEGORY OF [V-LETTER]
[AB/1] = α1 + β2 + 13
END

Note: The instruction MONITOR (…) is an auxiliary statement which causes

the symbols enclosed in the brackets to be output together with some other
information which will indicate where the fault occurred in the source program.
Although the object program compiled after such a fault occurs cannot be used,
the compiler is allowed to continue in order to locate any further possible faults.

The examples given above do not illustrate how the syntax and semantics
can sometimes be defined recursively. In order to do this let us now consider a
hypothetical autocode, similar to MERCURY Autocode, but allowing parentheses
in the general arithmetic expression [A-EXPR]. Thus, an example of an
arithmetic instruction in this language might be:

B10 = ABC (E1 –- G1(45.7 + H(J – 1))/10 + 63.5 B(J – 3) (A + D)

The only change that this would require in the previously defined syntax of [A-
EXPR] is that the definition of [FACTOR] be replaced by

PHRASE [FACTOR] = [VARIABLE], [K], [INDEX], ([A-EXPR])

Note that the order of preference is such that [V-LETTER]s followed by
[SUBSCRIPT]s of the form ([INDEX] [±] [N]) would be recognized as such
rather than as the product of a [V-LETTER] and an ([A-EXPR]). A result of
this is that if a particular expression of the form ([A-EXPR]) has the same
structure as the above alternative of [SUBSCRIPT] it must not be used in a
position where a [SUBSCRIPT] is a legal substitution. For example, + A (I +
10) would always be interpreted as + A(I + 10) and if A multiplied by (I +
10) is intended it should be written +(I + 10) A.

In order to interpret the meaning of this kind of [A-EXPR] the following
alterations must be made to the format routines already defined. Firstly provision
must be made for a 'nest' of accumulator dumps. That is, assuming β7 to be the
address of a group of registers to be used as the accumulator dump nest and the β6

26 R.A. Brooker, I.R. MacCallum, D.Morris and J.S. Rohl

the current position in this nest, initially zero, the format routine for DUMP ACC
[SEP] becomes

ROUTINE [AS] ≡ DUMP ACC [SEP]
PLANT (A ⟶ S), 0, 0, β6 + β7 IN β1
β6=β6+2
END

The format ACC = ACC + DUMP [SEP] has now to be re-defined thus:

ROUTINE [AS] ≡ ACC = ACC + DUMP
[SEP] β6=β6–2
PLANT (A + S ⟶ A), 0,0, β6 + β7 IN β1 END

Also the format ACC = DUMP [SEP] which recovers the last value dumped will be
required. However, the format statement defining this format cannot be written
after the formats already defined since syntactically it is a special case of ACC =
[±?] [TERM] [SEP] and ACC = [A-EXPR] [SEP]. It should therefore be
inserted before ACC = [±?] [FACTOR] [SEP]. The associated routine is

ROUTINE [AS] ≡ ACC = DUMP [SEP]
β6=β6–2
PLANT (S ⟶ A), 0,0, β6 + β7 IN β1 END

Finally, the format routines for ACC = [±?] [FACTOR] [SEP] and ACC =
ACC [OP] [FACTOR] [SEP] should be extended thus:

addition to the routine for ACC = [±?] [FACTOR] [SEP]

4) LET [FACTOR] = ([A-
EXPR]) ACC = [A-EXPR]
⟶8IF[±?]≡
END

8) PLANT (A = – A + n), 0, 0, 0 IN β1
END

addition to the routine for ACC = ACC [OP] [FACTOR] [SEP]

5) LET [FACTOR] = ([A-EXPR])
DUMP ACC
ACC = [A-EXPR]
DUMP ACC
β6=β6–2
ACC = DUMP
α3=β6+2 α4=
0 ⟶	14

The Compiler Compiler 27

PRELOADED AUXILIARY FORMATS

Most of these are concerned with manipulating information in lists and

dictionaries. Two kinds of list are available. Firstly there is the conventional list in
which consecutive items are recorded in consecutive store registers. With this kind
of list it is necessary to estimate its size in order to allocate an appropriate area in
the computer store. Since many lists required by compilers vary with different
source programs, to allocate a safe maximum area to each would be wasteful. A
second kind of list is therefore provided which does not assume any particular
relative positioning of items within the computer store and can be extended as
required. The items in these lists (called chain lists) are connected by means of a
link. That is, for each item two consecutive storage registers are used where the item
itself is recorded in the first and the second is reserved for the address of the pair of
registers containing the next item. The address part of the last pair of registers in
the list always contains the address of the first item in the list, and the address of
the last pair of registers is referred to as the address or location of the list.
Diagrammatically a circular list or chain (as it is called) of three items is

 address address address
item 1 of 2nd item 2 of 3rd item 3 of 1st

 item item item

location of list
An empty list is represented by the address 0. All the preloaded auxiliary
statements for manipulating circular lists assume these conventions. Initially all the
register pairs in the area of store allocated for circular lists are linked together and
the address of the first is in β89. Words are removed from and returned to this main
chain as required by the appropriate adjustment of links and the β89 register.

The operator '(+)' which appears in one alternative of [ADDR] namely [AB]
(+) [ABN] is concerned with the chain type of list. Its interpretation is such that if β4
is the address of one item in a chain that β4 (+) 1 is the address of the next, B4
(+) 2 is the address of the one after that, and so on.

If β2 is the location of a circular list then the instruction

α4 = (β2 (+) 5)
copies the fifth item in the list into α4. Behind the scenes the nth item is located by
tracing through the links of the first n – 1 items. It is always more efficient therefore
to scan the whole list systematically if this is possible. That is to set some [AB] to
the address of the first item and to deal with this item and then move on the [AB]
to the next item by the instruction [AB] = ([AB] + 1) and so on.

Conventional lists

Two areas of store are available for use as conventional lists. One of these is

the area where the α list of a routine is placed. It is therefore local to a routine since
the space occupied by these lists is recovered when control exits from the routine

28 R.A. Brooker, I.R. MacCallum, D.Morris and J.S. Rohl

(i.e. when an END is encountered). The address of the next available register in
this area is contained in β90. If a list of n registers is needed for local working in
a routine then β90 should be copied to the α chosen to be the address of the list
and β90, must then be advanced by n if the area is to be protected from
interference by further subroutines that might be called in.

A second area of working store is used for conventional lists required by more
than one routine. Because this area is also the main working area of the system, and
because information in this area may be moved about by the system, access is
indirect. Associated with it is an index which contains the address of every item in
the area. Although the position of an item may change it will always be associated
with the same index position, and items are therefore referred to by their index
positions or 'serial numbers'. The process of setting up a new item in this store for
use as a conventional list is best done by means of the instruction:

[AB] = CONVENTIONAL LIST OF [ABN] WORDS
[SEP] and lists of this kind are deleted by the instruction:

DELETE CONVENTIONAL LIST [AB] [SEP]

No further auxiliary formats are provided for manipulating information in
these lists since the basic listing instructions seem adequate. It must be
remembered that while access to the first kind of list was direct that to the
second kind of list is indirect. For example, if a list 10 words long is set up by the
instructions:

α1 = β90
β90 = β90 + 10

then the fourth word can be made unity by writing

(α1 +3) = 1

but if the list were set up thus:

β3 = CONVENTIONAL LIST OF 10 WORDS

then the same action would be represented by

α1 = (β3)

(α1 +3) = 1

Circular chain lists and nests

Both lists and nests have the structure described above and only differ in

the way they are used. If a circular chain is referred to as a list when being
constructed the result will be:

1st item 2nd item 3rd item last item
added added added addded

location of list

The Compiler Compiler 29

and if it is referred to as a nest it will be:

last item 3rd item 2nd item 1st item
added added added addded

location of nest

Thus items in a list are most easily processed or removed from the first through
the last, whilst in the case of a nest this order is reversed. In other words, a nest
is a last-in first-out device sometimes referred to as a pushdown list.

(1) [AB] = [LIST OR NEST] [WORD] [SEP]

This is the instruction which is used to set up a new list or nest of one item,

namely the value of the specified [WORD], and its address is recorded in [AB].
There is no difference in this case between using the words list and nest, both
may be represented diagrammatically as

[WORD]

[AB]

(2) [AB] = [LIST OR NEST] ([WORD] [,WORD*]) [SEP]

By this instruction a new list or nest can be set up which contains a sequence of
[WORD]s. If a list is set up the first item will contain the value of the first [WORD]
and the order of the rest will be preserved, but if a nest is set up this order will be
exactly reversed so that the last [WORD] comes first. For example:

β 3=LIST(0,–1,β1+5) would
produce the circular list:

0 – 1 R1

β3

where R1 is the result of adding 5 to β1 and

β3 = NEST (0, – 1, β1 + 5)

30 R.A. Brooker, I.R. MacCallum, D.Morris and J.S. Rohl

would produce the circular list:

R1 – 1 0

β3

(3) ADD [WORD] TO = [LIST OR NEST] [AB] [SEP]

Thus instruction is most easily explained diagrammatically as follows.
Let the list β3 have the structure:

0 – 1 10

β3
then the instruction ADD α4 + 2 TO LIST β3 would transform it to:

0

– 1

10

R2

β3

where R2 is the result of adding 2 to α4. To operate on the nest

10 – 1 0

β3

with an instruction such as ADD α4 + 2 TO NEST β3 would result in:

R2 10 – 1 0

β3

The Compiler Compiler 31

(4) ADD ([WORD] [,WORD*]) TO = [LIST OR NEST] [AB] [SEP]

This instruction has the effect of adding the sequence of words in the
specified order starting from the left. Its meaning is in fact, defined as follows:

ROUTINE[AS]≡ADD([WORD][WORD*])TO[LIST OR NEST][AB][SEP]
1) ADD [WORD] TO [LIST OR NEST] [AB]

⟶	1 IF [.WORD*] ≡ ,[WORD] [WORD*]
LET [,WORD*] = ,[WORD]
ADD [WORD] TO [LIST OR NEST] [AB]
END

(54) WITHDRAW [AB] FROM NEST [AB] [SEP]

This instruction copies the last entered word in the nest [AB] into the other

specified [AB], and removes this entry from the nest. For example, given the nest

20

10

– 1

0

β3

The effect of WITHDRAW α7 FROM NEST β3 would be to set α7 to 20 and to
transform the nest to

10 – 1 0

β3

Attempting to withdraw a word from an empty nest (e.g. β3 = 0) will have no
effect (i.e. the specified [AB] will not be altered).

(6) DELETE [LIST OR NEST] [AB] [SEP]

Whenever a list or nest is no longer required it should be linked back into

the main chain so that the storage registers it includes can be used again in
other lists. The above instruction carries out this action.

(7) [AB] = LIST [AB] ([AB],?) [SEP]

Very often it is required to keep a table of the argument-function value

type, say one which relates labels to control numbers. If this table is recorded in
a circular list by adding word pairs to the list with the instruction

ADD ([WORD], [WORD]) TO LIST [AB]

where the first [WORD] is the argument and the second [WORD] is the function
value, the above instruction may be used to look up the function value associated
with a given argument. The example α1 = LIST β4 (3,?) would record in α1, the

32 R.A. Brooker, I.R. MacCallum, D.Morris and J.S. Rohl

value corresponding to the argument 3 in LIST β4. If the required value does
not appear in the list α1, will be unaltered.

(8) [AB] = LIST [AB] + LIST [AB] [SEP]

This instruction joins together the two specified lists. The result is a list in which
the first item of the second list (on the R.H.S.) follows the last item of the first
list and the relative ordering of all the other items in these two lists is unaltered.
Since the last item of the second list thus becomes the last item of the new list,
the location of the new list (i.e. the content of the [AB] on the L.H.S.) will be
equal to the location of the second of the original lists. Although the two original
lists will cease to exist as separate lists the two [AB]s which contain their
locations will not be altered (unless the same [AB] appears on the L.H.S.). The
two lists must be distinct. That is, a list cannot be added to itself.

Dictionaries

Dictionaries are used to record 'symbol strings' and the single word (i.e. 24-
bit) identifiers with which they are associated, in a manner which facilitates
conversion from the former to the latter. The 'symbol strings' used in this
connection are recorded in circular lists where each item in the list is regarded as
a symbol. The two digits after the binary point must be zero (or 11) but the
remaining 22 digits may be used to describe the symbol. The dictionaries
themselves are recorded in circular lists, and an empty dictionary is represented
by a list containing one item only, namely zero. An empty dictionary whose
address is in β10 can therefore be set up by the instruction 'β10 = LIST 0'. In
cases where the original sequence of symbols representing an expression is
required for entering or looking up in a dictionary the instruction

(1) [AB] = LIST [PI] [SEP]

is provided. This regenerates the symbol string representing [PI] in a circular
list and sets [AB] to its address. Each character will be contained in a separate
word in the 7 bits immediately before the binary point (composite symbols will be
represented by their internal serial number). The most significant bit of the 7
will represent the internal shift (0 for inner shift) and the remaining 6 bits the
internal code for the character (see Atlas Manual). In the case of those characters
(such as space) which may appear on both shifts, the outer shift form will be
used. If the [PI] in question represents a built-in phrase or if its definition
involves a built-in phrase then it will not in general be possible to recover that
part of the original symbol string which corresponds to this built-in phrase.
Instead the analysis record for the built-in phrase will be recorded in the list in
place of the original symbols which represented it. This analysis record will be
preceded by two other words. The first of these will be an I word (see TREES and
ROUTINES) containing the serial number of the built-in phrase in question, and
the second will be a Bn word (also defined in TREES and ROUTINES) containing
the number of words in the analysis record. These additional words will be
required by the expression recognition routine if the reconstructed string is to be
re-analysed (see later). The analysis record of the built-in phrase in question
must not contain & words (see TREES and ROUTINES again).

The Compiler Compiler 33

(2) ADD LIST [AB] [COMMA] [WORD] TO DICT [AB] [SEP]

This instruction adds the new symbol string contained in LIST [AB], together
with the value of [WORD] as its associated value to the DICT [AB].

(3) [AB] = VALUE OF LIST [AB] IN DICT [AB] [SEP]

If the DICT [AB] has an entry identical to the symbol string contained in use
[AB], then the [AB] on the L.H.S. will be set to its associated value. Otherwise
the L.H.S. [AB] will not be altered.

(4) DELETE LIST [AB] FROM DICT [AB] [SEP]

This instruction has the obvious action of removing an entry from a dictionary. The
LIST [AB] is not deleted and no action is taken if the entry is not in the dictionary.

(5) CONVERT [PI] TO [AB] [SEP]

Two preset parameters are assumed by this instruction β2 and β3. The first
must contain the address of a dictionary and the second a provisional value to be
associated with the new entry if one is made. In this case β3, would also be
advanced by 1. Its first action is to convert the [PI] to a list then this is looked
up in the dictionary. If it appears in the dictionary [AB] is set to the associated
value, if not it is entered together with the value β3. [AB] is then set to β3 and
β3 is advanced.

Looking up a dictionary in reverse

It will sometimes be necessary to recover the string associated with a given
value. This can be done with the format

LIST [AB] = ENTRY WITH VALUE [AB] IN DICT [AB] [SEP]

It is assumed that no two entries will have same value, otherwise the 'first' entry
will be taken (see TREES and ROUTINES).

Other preloaded auxiliary formats

(1) ASSIGN VALUE [AB] TO [PI] [SEP]

The only substitution for [PI] that will be accepted by the format routine
associated with this format is [N] or [N/I], etc. Its purpose is to enable an
integer in an [AB] register to be dynamically associated with the [N] type
identifier. This then permits the value of the [AB] to be incorporated into a
format where the expression [N] is the only permitted substitution.

(2) MONITOR ([ALL SYMBOLS EXCEPT RT BRACKET]) [SEP]

Some inconsistencies in a source program which a compiler can recognize (e.g.
the same control label used twice) do not prevent it from continuing to translate the
remainder of the source program in order to detect further possible errors. The
above instruction is provided so that the occurrence of these faults can be
monitored'. That is whenever this instruction is obeyed the symbols enclosed in
parentheses will be output (in channel 0) together with some information indicating
which source statement was being translated. Any basic or composite symbol can

34 R.A. Brooker, I.R. MacCallum, D.Morris and J.S. Rohl

be substituted into this instruction and the two pseudo-identifiers [EOL] and
[SP] can also be used to influence the layout.

(3) ANALYSE LIST [AB] W.R.T. [PI] [SEP]

This instruction uses the expression recognition routine in order to compare the
sequence of source symbols in the LIST [AB] with the alternative phrases
represented by the identifier substituted for [PI]. The analysis record which results
will be recorded in the local working area (i.e. (B90) ⟶) and B90 will be advanced
to the next available register. The identifier substituted for [PI] will be associated
with this analysis record and it can be subsequently substituted into sub-statements
or parameter resolving instructions in the usual way. That part of the LIST [AB]
which is recognized as a phrase of the specified form will be deleted (if all the LIST
[AB] is deleted [AB] will be set to zero). If no phrase of the specified form can be
recognized the program will be halted. This instruction can be used to re-analyse the
symbol string produced by the instruction [AB] = LIST [PI]. However if the
regenerated sequence contains the analysis records of built-in phrases (see earlier),
the same built-in phrases must appear in the same position in the new class of
phrase to which it is to be matched.

It is not anticipated that this facility will be generally used (or in fact
generally required) and some further knowledge of the system will be necessary
in order to use it safely. Particular care should be exercised if certain
preloaded built-in phrases are involved (e.g. [PI], [α] and [LABEL])

(4) LIST [AB] = NEXT LINE FROM INPUT [N] [SEP]

This instruction reads all the characters in the specified input stream up to and
including the next newline code, and records them in the LIST [AB]. The
characters are recorded one per word in the 6 bits before the binary point. All
characters including shift characters will be recorded. The main we of this
instruction is to look ahead in the source program and to obtain the actual
characters that appear before they are subject to the 'line reconstruction' process and
the 'ignore '. One use for this facility in a MERCURY Autocode Compiler (say) is in
the format routine associated with the instruction 'CAPTION'. This instruction
means that the next line of characters have to be recorded in the compiled program
together with some instructions to output them each time the 'CAPTION' instruction
is obeyed. The source program is always input stream 0 and we shall not discuss
here the reason for allowing the above instruction to specify other input streams.

The Compiler Compiler 35

OTHER MASTER STATEMENTS

The master phrases such as PHRASE, FORMAT, etc., are members of a
format class [MP], and it is possible to introduce new master phrases into the
system, and to define the 'meaning' of these by means of format routines. For
example if it was required to introduce a further master phrase 'format' to have
exactly the same meaning as 'FORMAT' this could be done thus:

FORMAT [MP] = format
FORMAT [MP] ≡ format
LET [MP] = FORMAT
CALL R [MP]
END

The meaning of new master phrases would not generally be described as simply as
this and would probably involve operating on the input stream, and recording
information in the central record store. This means that a knowledge of the inner
working of the system is required which is not given here. In fact it is unlikely that
ordinary users will make private additions to the system in this way but it is a
convenient means by which the system can be generally extended from time to time.
Some additions which have already been made to the system are described below.

Built-in phrase statement

The built-in phrase statement is a means of associating a sequence of
instructions (a 'built-in phrase routine') with a phrase identifier. When an identifier
associated with a built-in phrase is encountered by the expression recognition
routine, control is transferred to the associated built-in phrase routine. These
routines are designed to recognize in the input stream all members of the class or
phrase with which they are associated and to plant an analysis record. The main
advantage they have over the more usual phrase definitions is that they can
generate unorthodox analysis records. They must however satisfy the main
conventions relating to analysis records (see TREES and ROUTINES).

A built-in phrase statement takes the form:
BUILT-IN PHRASE [IDENTIFIER]

[the routine proper]

That is to say, the identifier as written on the first line is followed on subsequent
lines by the instructions which comprise the routine.

The routine proper must obey the following rules :
(1) The only instructions which it may contain are parameter-free forms of the built-in instructions. Jump instructions are further limited to the ⟶1 and ⟶1 if β1

= β2 forms ; ⟶α1 and ⟶β1 are not permitted. In fact αi must not be used anywhere since these routines are not provided
with local (α) working space. Instructions involving (+) are also prohibited and basic machine orders must not involve βi (i.e.

121, 92, 0, –1 is allowed but 121, 92, 0, β93 is not).

(2) The following are the parameters of built-in routines:
β61 = the address of a circular list containing all the symbols in the line

of source material currently being examined.

36 R.A. Brooker, I.R. MacCallum, D.Morris and J.S. Rohl

β62 = the address of the last recognized symbol in the above list so that
 (β62 + I) is the first character to be examined by the built-in
 routine. Accordingly, β62 must be advanced to the last symbol of any
 expression recognized by the routine.

β70 is the link set by the ERR and the built-in routine should be

 terminated by Β127 = Β70.
β63 = next available register in the conventional list containing the A.R.

 An analysis record satisfying the conventions of A.R.s (see TREES
and ROUTINES) has to be recorded here and β63 advanced to the
next available register if an expression is recognized, otherwise
β63 must not be altered.

Bt must be set on exit either +ve for success or –ve for failure by means of
the appropriate machine order.
The only other βs which may be used are β91 ⟶ β97. As already mentioned these routines have no local (α) working space.

Primary compiling routines

A primary compiling routine can be associated with any member of the
format classes [BS], [AS] and [SS]. Its function is to compile machine orders
to replace non-parametric forms of the format with which it is associated. The
primary compiling routines that are provided will be used by the routine which
assembles format routines inside the machine in order to produce more efficient
routines, as follows. Each time the routine assembling routine recognizes an
instruction it tests if its analysis record contains any parameters. If it does then
the analysis record is copied into the routine to be interpreted whenever the
routine is subsequently used. If however the analysis record is non-parametric
then the routine assembling routine examines the list of primary compiling
routines to see if one has been provided for the current instruction. The
instruction is treated as before if there is not one available, but if there is then it
is called in to translate the instruction into machine code.

The primary statement for defining primary compiling routines closely
resembles that for format routines, and only the word COMPILER is used to
distinguish the two thus:

ROUTINE (COMPILER) [BS] ≡ [AB] = [WORD] [SEP]
……………………………………………………………………..
………………………………………………………………..

Any of the usual basic and auxiliary statements can be used in these routines. The
instructions representing the format should be compiled in the store registers (β88)
⟶ and on exit β88 should be advanced to the address of the next available register. If the
compiled instructions require some B-lines B82, B83, B84 may be used. In some primary
compiling routines it is convenient to select a few special cases of the format and to compile
orders for these, but to exit without compiling the remainder and to leave the routine assembling
routine to record their analysis records instead. If this course is followed β54 must be set negative
before exit. One primary compiling routine can call another as a subroutine by means of the
instruction:	

The Compiler Compiler 37

CALL [PI] COMPILER [GENERATED-P]

For example, the routine for [AB] = [WORD] [SEP] might be called by this
routine which compiles [AB] = [WORD] [OPERATOR] [WORD] [SEP] thus:

ROUTINE (COMPILER) [BS] ≡ [AB] = [WORD/1] [OPERATOR]
[WORD/2] [SEP]

CALL [BS/1] COMPILER B83 = [WORD/1]
CALL [BS/1] COMPILER B82 = [WORD/2]
α1 = CATEGORY OF [OPERATOR]
⟶ α1	
1) PLANT 0124, 83, 82, 0 IN
B88 CALL [BS/1] COMPILER [AB]
= B83 END

"
"
"

Primary compiling routines will be provided for all the basic formats and

some of the preloaded auxiliary formats. The user considering it worthwhile to
introduce additional ones for compiling non-parametric forms of his auxiliary
statements is recommended to examine the provided ones.

Small routines

These routines are a special kind of system routine and they differ from the
normal system routine only because of the way they are entered. The same
instruction, namely CALL R [ABN] is used in both cases but the routine
changing sequence distinguishes the two kinds of routine and in the case of small
routines bypasses all the protective nesting of the α work space links, etc., which
is normally carried out. Small routines are thus entered more quickly but as a
result are subjected to the following restrictions. They must not involve αs or
phrase identifiers and the only kind of jump instructions they may contain are
those in which the label is specified explicitly (e.g. ⟶ 3). All the logical paths
through a small routine should end with the instruction β127 = β70 and not
END. The heading for the small routine statement is

ROUTINE SMALL R [N]

As in the case of system routines [N] is the serial number to be assigned to the
routine and one of the reserved set 1000-1023 should be used.

REFERENCES

1. Brooker, R.A. and Morris, D., 'An Assembly Program for a Phrase Structure

Language'. Computer J.,3, No. 3 (1960).
2. Brooker, R. A. and Morris, D., 'Some Proposals for the Realization of a Certain

Assembly Program'. Computer J.,3, No. 4. (1961).
3. Brooker, R. A and Morris, D., 'A Description of Mercury Autocode as a Phrase

Structure Language'. Annual Review in Automatic Programming, Vol 2, Pergamon
Press, Oxford (1961).

38 R.A. Brooker, I.R. MacCallum, D.Morris and J.S. Rohl

4. Brooker, R.A. and Morris, D., 'A General Translation Program for Phrase

Structure Languages'. J..A.C.M., 9, No. 1 (1962).
5. Brooker, R.A., Morris, D. and Rohl,J.S., 'Trees and Routines'. Computer J., 5, No. 1

(1962).

The Compiler Compiler 39

APPENDIX

LIST OF BUILT-IN AND PRELOADED PHRASES AND FORMATS

The built-in phrases. are denoted by b in the left hand margin, and in these
cases the 'definitions' given below serve only to indicate the type of expression
which can be substituted for them and are not necessarily consistent with the
corresponding analysis records (only in fact in the case of [B] and [N]. A c in
the left hand margin indicates that the analysis record of the phrase gets
contracted out by the ERR.

PHRASES

b [A] = = A1, A2, A3…….A0 (≡ [α] = α1…….)

b [B] = B1, B2, B3….….B0 (≡ [β] = β1…….)

b [N] = = 1, 2, 3……....0

 [OPERATOR] = -, ×, /, &, V, ≢, AND, NOT EQV

 [COMPARATOR] = =,≠,>,≤,<,≥,)
 [0-3] = 00, 01, 10, 11
 [AB] = [A], [B] (≡ [αβ])

 [ABN] = [A], [B], [N] (≡ [αβN])

 [ADDR] = [AB] + [ABN], [AB] - [ABN], [AB](+)[ABN],
 [AB
 [WORD] = [ADDR], ([ADDR]), [-?][N].[0-3],[-?].[0-3],
 [-?][N],[OW]
b [-] = -
b [FD] = [BD][OD][OD][OD], [OD][OD][OD] where [BD] denotes
 a binary digit 0,1 and [OD] an octal digit 0, 1, 2, 3,
 4,5,6,7
 [OW] = * followed by up to 8 octal digits starting with the most
 significant
b [IU] = IF, UNLESS
b [LABEL] = [ABN]
b [PI] = general phrase identifier | see text for

b [RESOLVED-P] = some [P] expression
 following a [PI] phrase | further details
c [GENERATED-P] = some [P] expression following a [PI] phrase

 [JUMP] = ->, ⟶, JUMP
 note : the second alternative ⟶ corresponds both to the genuine
 ⟶	on Mercury/Pegasus teleprinter keyboards and to the
 compound symbol - and > on Atlas Flexowriters.
c [EQV] = ≡, (≡)
 [,WORD] = [COMMA][WORD]
 [LIST OR NEST]= LIST, NEST
b [ALL SYSMOLS EXCEPT RT BRACKET] = any symbol except)

40 R.A. Brooker, I.R. MacCallum, D.Morris and J.S. Rohl

SPECIAL PHRASES

[COMMA] denotes a , in a format routine
[,] denotes a , in source language
[[] denotes a [in source language

[EOL] denotes a newline in source language
[SP] denotes a space in source language

[ERASE] denotes a \\\ in source language
[SEP] [COMMA], [EOL]

note: this phrase which follows all the following instruction formats indicates
that they must be terminated either with a , or a newline.

BUILT-IN FORMATS

[AB] = [WORD][SEP]

[AB] = [WORD][OPERATOR][WORD][SEP]
([ADDR]) = [WORD][SEP]
([ADDR]) = [WORD][OPERATOR][WORD][SEP]
PLANT[FD][COMMA][ABN][COMMA][ABN][COMMA][WORD] IN [B][SEP]
[FD][COMMA][WORD][COMMA][WORD][COMMA][WORD][SEP]
[JUMP][LABEL][SEP]
[JUMP][LABEL][IU][WORD][COMPARATOR][WORD][SEP]
CALL R [ABN][SEP]
CALL R [PI][SEP]
END[SEP]
[FD][COMMA][WORD][COMMA]0[COMMA][LABEL][SEP]
LET[PI][EQV][RESOLVED-P][SEP]
[JUMP][LABEL][IU][PI][EQV][RESOLVED-P][SEP]
LET[PI] = [GENERATED-P][SEP]
[JUMP][LABEL][IU][PI] = [PI][SEP]
[AB] = NUMBER OF [PI][SEP]
[AB] = CATEGORY OF [PI][SEP]
[AB] = CLASS OF [PI][SEP]
[AB] = ADDRESS OF [PI][SEP]
[PI] = [AB][SEP]
[AB] = INDEX [ABN][SEP]
INDEX[ABN] = [AB][SEP]
SHIFT [AB] UP [ABN][SEP]
SHIFT [AB] DOWN [ABN][SEP]
PRINT [ABN][SEP]
PRINT SYMBOL [ABN][SEP]
[WORD]/[WORD][SEP]
PRINT [ABN] IN OCTAL [SEP]

The Compiler Compiler 41

AUXILARY-IN FORMATS

[AB] = CONVENTIONAL LIST OF [ABN] WORDS
[SEP] DELTE CONVENTIONAL LIST [AB][SEP]
[AB] = [LIST OR NEST][WORD][SEP]

[AB] = [LIST OR NEST]([WORD][,WORD*])[SEP]
ADD [WORD] TO [LIST OR NEST][AB][SEP]

ADD ([WORD][,WORD*]) TO [LIST OR
NEST][AB][SEP] WITHDRAW [AB] FROM NEST
[AB][SEP] DELETE [LIST OR NEST][AB][SEP]
[AB] = LIST [AB]([AB,?)[SEP]

LIST [AB] = LIST [AB] + LIST
[AB][SEP] [AB] = LIST [PI][SEP]
ADD LIST [AB][COMMA][WORD] TO DICT [AB][SEP]

[AB] = VALUE OF LIST [AB] IN DICT [AB][SEP]DELETE LIST [AB]
FROM DICT [AB][SEP]
CONVERT [PI] TO [AB][SEP]
LIST [AB] = ENTRY WITH VALUE [AB] IN DICT [AB][SEP]
CALL [PI] COMPILER [GENERATED-P]
ASSIGN VALUE [AB] TO [PI][SEP]

MONITOR ([ALL SYMBOLS EXCEPT RT BRACKET])[SEP]
ANALYSE LIST [AB] W.R.T. [PI][SEP]

LIST [AB] = NEXT LINE FROM INPUT
[N][SEP] LIST [AB] = NEXT RECONSTRUCTED
LINE [SEP] PRINT LIST [ABN][SEP]

42 R.A. Brooker, I.R. MacCallum, D.Morris and J.S. Rohl

APPENDIX 1

SERIAL NUMBERS OF BASIC SYMBOLS

Octal Octal Octal Octal

00 spare 40 100 spare 140 spare

01 used 41 A 101 SPACE 141 a
02 used 42 B 102 spare 142 b
03 used 43 C 103 spare 143 c

04 EOL 44 D 104 EOL 144 d
05 [45 E 105 COMA 145 e
06 used 46 F 106 spare 146 f
07 used 47 G 107 spare 147 g

10 (50 H 110 spare 150 h
11) 51 I 111 spare 151 i
12 , 52 J 112 spare 152 j

13 π £ $ 53 K 113 spare 153 k

14 ? 54 L 114 spare 154 l
15 & 55 M 115 spare 155 m
16 * 56 N 116 spare 156 n
17 / 57 O 117 : 157 o

20 0 60 P 120 Φ × 160 p
21 1 61 Q 121 [161 q
22 2 62 R 122] 162 r

23 3 63 S 123 ⟶ 163 s
24 4 64 T 124 ≥ 164 t
25 5 65 U 125 ≠ 165 u
26 6 66 V 126 _ 166 v

27 7 67 W 127 | 167 w

30 8 70 X 130 % -1 170 x
31 9 71 Y 131 ≈ ∼ 171 y
32 < 72 Z 132 α 172 z
33 > 73 spare 133 β 173 spare
34 = 74 spare 134 ½ 174 spare
35 + 75 spare 135 spare 175 spare
36 – 76 spare 136 spare 176 spare

37 . 77 fault 137 spare 177

The Compiler Compiler 43

ADDENDA

The following [BS] instructions are not described in the text:

(i) [AB] = INDEX[ABN] [SEP]
(ii) INDEX[ABN] = [AB] [SEP]
(iii) SHIFT [AB] UP [ABN] [SEP]
(iv) SHIFT [AB] DOWN [ABN] [SEP]
(v) PRINT [ABN] [SEP]
(vi) PRINT SYMBOL [ABN] [SEP]
(vii) SPACE [SEP]
(viii) NEWLINE. [SEP]
(ix) [WORD] / [WORD] [SEP]
(x) PRINT [ABN] IN OCTAL [SEP]

(i) and (ii) enable the user to access the index of addresses of items in the
main working area of the compiler, (see e.g. Conventional Lists, p. 259).

(iii) and (iv) perform circular shifting operations on 24-bit words.
(v) prints the signed integer in digits 23-2 of the 24-bit word [ABN] followed

by a single space.
(vi) prints the basic or composite symbol represented by [ABN].
(ix) permits 24-bit words to be inserted in a format routine.
(x) prints the 8 octal digits corresponding to the word [ABN].
The following [AS] instructions are not described in the text:
(i) LIST [AB] = NEXT RECONSTRUCTED LINE [SEP]
(ii) PRINT LIST [ABN][SEP]

Notes

(i) The next line of input on the currently selected channel is recorded in
the circular list [AB].

(ii) prints the list of basic or composite symbols [ABN].

The following is a complete list of the formats in the Master Phrase [MP]
dictionary.

(i) PHRASE
(ii) ITEM
(iii) END OF MESSAGE
(iv) FORMAT CLASS
(v) FORMAT
(vi) DELETE ITEM
(vii) REPLACE ITEM
(viii) END OF PRIMARY MATERIAL
(ix) ROUTINE

44 R.A. Brooker, I.R. MacCallum, D.Morris and J.S. Rohl

(x) BUILT-IN PHRASE
(xi) DEFINE COMPILER
(xii) AMEND COPILER

Notes

(ii) and (vii) were used in connection with a primitive type of routine
routine as part of the bootstrapping of the compiler compiler into Atlas. Their
use should be avoided.

(iii) serves to denote the end of a section of primary material when a source
statement is to follow.

(vi) recovers the space occupied by an item in the working area of the
compiler when it is no longer required.

(viii), (xi) and (xii). The facilities afforded by these master phrases is due to
the existence of the Atlas Supervisor System and in order to appreciate their use,
the reader should be conversant with the Ferranti documents R55 and R58.

These master phrases are followed on the same line by the compiler name
which is subsequently to be referred to in Job descriptions.

The symbols following the Master phrase will be treated in the same
manner as, say, a Phrase definition, e.g. spaces and erases will be ignored, and
significant spaces are indicated by [SP] etc. Up to 8 symbols or identifiers may
specify a compiler name; the remainder of the line will be ignored.

The action of DEFINE COMPILER is to record the name which follows it in
the list of available compilers held by the supervisor system and to write the
compiler to the compiler magnetic tape.

If the master phrase END OF PRIMARY MATERIAL precedes DEFINE
COMPILER, the compiler defined will consist mainly of phrases, formats and
routines which the user has defined, together with those routines of the compiler
compiler which make it a compiler complete, and independent of the compiler
compiler.

If it is not preceded by the master phrase END OF PRIMARY MATERIAL then it
will contain all the facilities of the compiler compiler and therefore corrections and
additions can later be made to this compiler in compiler compiler language.

The master phrase AMEND COMPILER is to be used for recording corrected
compilers. It will carry out the defining operation as above but also arrange to
lose the copy of the compiler to which the corrections were made. Obviously, if a
job ends with AMEND COMPILER the compiler name following must be the same
as that referred to in the Job description, and if DEFINE COMPILER is used it
must be followed by a new name which did not previously appear in the
supervisor's list of compiler names.

Monitoring and diagnostics

When phrases and formats are being read into the computer serial numbers
are allocated. In subsequent fault-finding it is useful to know the serial numbers in
question, and therefore these are printed out, together with the phrase or format as

The Compiler Compiler 45

they are allocated. The serial number of a phrase identifier is not necessarily
printed out when it is defined but rather when it first appears. When a format is
printed, the serial number of any phrase identifiers it contains is printed instead
of the identifier itself.

An example of the layout is
P — WORD , 280
P — ADDR , 281
F — ([281]) = [280] , 282

where P — indicates that a phrase identifier follows and F — indicates that a

format follows.
In order to facilitate the interpretation of fault monitoring which occurs during

the compilation of ROUTINES, the start of each routine is monitored in the form
START OF R 462

(If the routine happens to be a primary compiling routine (see P.270) this
monitoring is preceded by

CV for R 212

where 212 would be the serial number of the corresponding format routine).

The monitoring of faults detected in primary material by the compiler
compiler takes the following form:—

COMPILER COMPILER FAULT m R n L p

where:

m is the fault number
n is the routine number
p is the line number of the master phrase which follows the primary

statement in question.
The nature of the fault can be deduced from the following table:

R215 (analysis)

FAULT 1 Analysis w.r.t. undefined phrase

R218 (phrase)

FAULT 1 Phrase definition not recognized (∴ it is ignored)
FAULT 2 Phrase defined twice (∴	first	one	lost)
FAULT 5 BUT NOT in wrong place(i.e. as 1st alternative)
FAULT 6 NIL after a BUT NOT
FAULT 7 NIL as the only alternative

R 220 (format)

FAULT 1 Format not recognized (∴	it	is	ignored)
FAULT 2 Format class not defined.

R 221 (routine)

46 R.A. Brooker, I.R. MacCallum, D.Morris and J.S. Rohl

 FAULT 1Routine heading not recognized.
 FAULT 2Format class not defined

 FAULT 3Analysis record of routine heading at lower level than
 format e.g.
 FORMAT[AS] = [VAR] = ACC [SEP]

 ROUTINE[AS] = x = ACC [SEP]

 FAULT 4Routine defined twice (first version is deleted)
 FAULT 5PI in small routine
 FAULT 6α in small routine

R 230 (PI conversion)
 FAULT 1PI not recognized, e.g. [A/I] instead of [A/1]

 FAULT 2PI not declared before used in a routine

 FAULT 3Index occurs in a non-* class

 FAULT 4 Spurious index in a PI Only occurs in phrases and

 FAULT 5 Spurious label in a PI formats

R 238 (line
 reconstruct)
 FAULT 1Too many (> 3) characters overprinted

 FAULT 2Too many (>160) characters on a line

R 253 (body of routine)
 FAULT 2Instruction not recognized (the faulty instruction will also be
 printed
 FAULT 3Compiling version required, not available

 FAULT 4 Label not set
 FAULT 5Label set twice.

R272 (format class
 FAULT 1Format class defined twice

 FAULT 2Too many (> 16) format classes defined

R292 (built-in phrase)
 FAULT 1Defined twice (first copy is deleted)
 FAULT 3Α in a built-in phrase.

When a compiler is translating source material two further kinds of faults may
be detected. One is an illegal source statement in which case the line number within

The Compiler Compiler 47

the source program, followed by INSTRUCTION NOT RECOGNISED are printed
and the faulty instruction is printed on the next line.

The other kind of fault is concerned mainly with the illegal use of parameter
resolving instructions, and the fault print-out takes the following form:

COMPILER COMPILER FAULT* m R n L p

All non-zero B-
lines from B1 —
B124 in octal

The stack

To users who do not have an intimate knowledge of the compiler compiler,
the only useful information is the Routine number, n, which would be the serial
number of the routine containing the instruction which has been wrongly used.

INITIAL ENTRY TO A COMPILER

Provision has been made for the user to pre-set various parameters for his
compiler each time the compiler is entered from the supervisor. For this purpose
he must supply a routine whose serial number is 162. In addition to B-lines and
store-lines which he may wish to set on entry, he should also set the following
index registers:

index 136 = maximum number of lines in a single source statement
index 140 = maximum number of illegal instructions to be allowed before

terminating translation
Thus routine 162 might begin:

ROUTINE R 162
B91=2
INDEX 136 = B91
B91 = 25
INDEX 140 = B91

